Trainable Class Prototypes for Few-Shot Learning
- URL: http://arxiv.org/abs/2106.10846v1
- Date: Mon, 21 Jun 2021 04:19:56 GMT
- Title: Trainable Class Prototypes for Few-Shot Learning
- Authors: Jianyi Li and Guizhong Liu
- Abstract summary: We propose the trainable prototypes for distance measure instead of the artificial ones within the meta-training and task-training framework.
Also to avoid the disadvantages that the episodic meta-training brought, we adopt non-episodic meta-training based on self-supervised learning.
Our method achieves state-of-the-art performance in a variety of established few-shot tasks on the standard few-shot visual classification dataset.
- Score: 5.481942307939029
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Metric learning is a widely used method for few shot learning in which the
quality of prototypes plays a key role in the algorithm. In this paper we
propose the trainable prototypes for distance measure instead of the artificial
ones within the meta-training and task-training framework. Also to avoid the
disadvantages that the episodic meta-training brought, we adopt non-episodic
meta-training based on self-supervised learning. Overall we solve the few-shot
tasks in two phases: meta-training a transferable feature extractor via
self-supervised learning and training the prototypes for metric classification.
In addition, the simple attention mechanism is used in both meta-training and
task-training. Our method achieves state-of-the-art performance in a variety of
established few-shot tasks on the standard few-shot visual classification
dataset, with about 20% increase compared to the available unsupervised
few-shot learning methods.
Related papers
- Curriculum Meta-Learning for Few-shot Classification [1.5039745292757671]
We propose an adaptation of the curriculum training framework, applicable to state-of-the-art meta learning techniques for few-shot classification.
Our experiments with the MAML algorithm on two few-shot image classification tasks show significant gains with the curriculum training framework.
arXiv Detail & Related papers (2021-12-06T10:29:23Z) - Partner-Assisted Learning for Few-Shot Image Classification [54.66864961784989]
Few-shot Learning has been studied to mimic human visual capabilities and learn effective models without the need of exhaustive human annotation.
In this paper, we focus on the design of training strategy to obtain an elemental representation such that the prototype of each novel class can be estimated from a few labeled samples.
We propose a two-stage training scheme, which first trains a partner encoder to model pair-wise similarities and extract features serving as soft-anchors, and then trains a main encoder by aligning its outputs with soft-anchors while attempting to maximize classification performance.
arXiv Detail & Related papers (2021-09-15T22:46:19Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
Prototype-centered Attentive Learning (PAL) model composed of two novel components.
First, a prototype-centered contrastive learning loss is introduced to complement the conventional query-centered learning objective.
Second, PAL integrates a attentive hybrid learning mechanism that can minimize the negative impacts of outliers.
arXiv Detail & Related papers (2021-01-20T11:48:12Z) - Few-Shot Image Classification via Contrastive Self-Supervised Learning [5.878021051195956]
We propose a new paradigm of unsupervised few-shot learning to repair the deficiencies.
We solve the few-shot tasks in two phases: meta-training a transferable feature extractor via contrastive self-supervised learning.
Our method achieves state of-the-art performance in a variety of established few-shot tasks on the standard few-shot visual classification datasets.
arXiv Detail & Related papers (2020-08-23T02:24:31Z) - Self-Supervised Prototypical Transfer Learning for Few-Shot
Classification [11.96734018295146]
Self-supervised transfer learning approach ProtoTransfer outperforms state-of-the-art unsupervised meta-learning methods on few-shot tasks.
In few-shot experiments with domain shift, our approach even has comparable performance to supervised methods, but requires orders of magnitude fewer labels.
arXiv Detail & Related papers (2020-06-19T19:00:11Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
We introduce a learning algorithm which directly optimize model's ability to learn text representations for effective learning of downstream tasks.
We show that there is an intrinsic connection between multi-task pre-training and model-agnostic meta-learning with a sequence of meta-train steps.
arXiv Detail & Related papers (2020-04-12T09:05:47Z) - Meta-Baseline: Exploring Simple Meta-Learning for Few-Shot Learning [79.25478727351604]
We explore a simple process: meta-learning over a whole-classification pre-trained model on its evaluation metric.
We observe this simple method achieves competitive performance to state-of-the-art methods on standard benchmarks.
arXiv Detail & Related papers (2020-03-09T20:06:36Z) - Unraveling Meta-Learning: Understanding Feature Representations for
Few-Shot Tasks [55.66438591090072]
We develop a better understanding of the underlying mechanics of meta-learning and the difference between models trained using meta-learning and models trained classically.
We develop a regularizer which boosts the performance of standard training routines for few-shot classification.
arXiv Detail & Related papers (2020-02-17T03:18:45Z) - Incremental Meta-Learning via Indirect Discriminant Alignment [118.61152684795178]
We develop a notion of incremental learning during the meta-training phase of meta-learning.
Our approach performs favorably at test time as compared to training a model with the full meta-training set.
arXiv Detail & Related papers (2020-02-11T01:39:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.