3D Shape Registration Using Spectral Graph Embedding and Probabilistic
Matching
- URL: http://arxiv.org/abs/2106.11166v1
- Date: Mon, 21 Jun 2021 15:02:31 GMT
- Title: 3D Shape Registration Using Spectral Graph Embedding and Probabilistic
Matching
- Authors: Avinash Sharma, Radu Horaud and Diana Mateus
- Abstract summary: We address the problem of 3D shape registration and we propose a novel technique based on spectral graph theory and probabilistic matching.
The main contribution of this chapter is to extend the spectral graph matching methods to very large graphs by combining spectral graph matching with Laplacian embedding.
- Score: 24.41451985857662
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the problem of 3D shape registration and we propose a novel
technique based on spectral graph theory and probabilistic matching. The task
of 3D shape analysis involves tracking, recognition, registration, etc.
Analyzing 3D data in a single framework is still a challenging task considering
the large variability of the data gathered with different acquisition devices.
3D shape registration is one such challenging shape analysis task. The main
contribution of this chapter is to extend the spectral graph matching methods
to very large graphs by combining spectral graph matching with Laplacian
embedding. Since the embedded representation of a graph is obtained by
dimensionality reduction we claim that the existing spectral-based methods are
not easily applicable. We discuss solutions for the exact and inexact graph
isomorphism problems and recall the main spectral properties of the
combinatorial graph Laplacian; We provide a novel analysis of the commute-time
embedding that allows us to interpret the latter in terms of the PCA of a
graph, and to select the appropriate dimension of the associated embedded
metric space; We derive a unit hyper-sphere normalization for the commute-time
embedding that allows us to register two shapes with different samplings; We
propose a novel method to find the eigenvalue-eigenvector ordering and the
eigenvector signs using the eigensignature (histogram) which is invariant to
the isometric shape deformations and fits well in the spectral graph matching
framework, and we present a probabilistic shape matching formulation using an
expectation maximization point registration algorithm which alternates between
aligning the eigenbases and finding a vertex-to-vertex assignment.
Related papers
- Differentiable Proximal Graph Matching [40.41380102260085]
We introduce an algorithm for graph matching based on the proximal operator, referred to as differentiable proximal graph matching (DPGM)
The whole algorithm can be considered as a differentiable map from the graph affinity matrix to the prediction of node correspondence.
Numerical experiments show that PGM outperforms existing graph matching algorithms on diverse datasets.
arXiv Detail & Related papers (2024-05-26T08:17:13Z) - Graph Generation via Spectral Diffusion [51.60814773299899]
We present GRASP, a novel graph generative model based on 1) the spectral decomposition of the graph Laplacian matrix and 2) a diffusion process.
Specifically, we propose to use a denoising model to sample eigenvectors and eigenvalues from which we can reconstruct the graph Laplacian and adjacency matrix.
Our permutation invariant model can also handle node features by concatenating them to the eigenvectors of each node.
arXiv Detail & Related papers (2024-02-29T09:26:46Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
The reliability of graph embeddings depends on how much the geometry of the continuous space matches the graph structure.
We introduce a new class of manifold, named soft manifold, that can solve this situation.
Using soft manifold for graph embedding, we can provide continuous spaces to pursue any task in data analysis over complex datasets.
arXiv Detail & Related papers (2023-11-29T12:48:33Z) - G-MSM: Unsupervised Multi-Shape Matching with Graph-based Affinity
Priors [52.646396621449]
G-MSM is a novel unsupervised learning approach for non-rigid shape correspondence.
We construct an affinity graph on a given set of training shapes in a self-supervised manner.
We demonstrate state-of-the-art performance on several recent shape correspondence benchmarks.
arXiv Detail & Related papers (2022-12-06T12:09:24Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Template based Graph Neural Network with Optimal Transport Distances [11.56532171513328]
Current Graph Neural Networks (GNN) architectures rely on two important components: node features embedding through message passing, and aggregation with a specialized form of pooling.
We propose in this work a novel point of view, which places distances to some learnable graph templates at the core of the graph representation.
This distance embedding is constructed thanks to an optimal transport distance: the Fused Gromov-Wasserstein (FGW) distance.
arXiv Detail & Related papers (2022-05-31T12:24:01Z) - Articulated Shape Matching Using Laplacian Eigenfunctions and
Unsupervised Point Registration [38.16866987817019]
Spectral graph theory can be used to map these graphs onto lower dimensional spaces and match shapes by aligning their embeddings.
We derive a new formulation that finds the best alignment between two congruent $K$-dimensional sets of points by selecting the best subset of eigenfunctions of the Laplacian matrix.
arXiv Detail & Related papers (2020-12-14T08:49:25Z) - Offline detection of change-points in the mean for stationary graph
signals [55.98760097296213]
We propose an offline method that relies on the concept of graph signal stationarity.
Our detector comes with a proof of a non-asymptotic inequality oracle.
arXiv Detail & Related papers (2020-06-18T15:51:38Z) - Instant recovery of shape from spectrum via latent space connections [33.83258865005668]
We introduce the first learning-based method for recovering shapes from Laplacian spectra.
Given an auto-encoder, our model takes the form of a cycle-consistent module to map latent vectors to sequences of eigenvalues.
Our data-driven approach replaces the need for ad-hoc regularizers required by prior methods, while providing more accurate results at a fraction of the computational cost.
arXiv Detail & Related papers (2020-03-14T00:48:34Z) - Wasserstein-based Graph Alignment [56.84964475441094]
We cast a new formulation for the one-to-many graph alignment problem, which aims at matching a node in the smaller graph with one or more nodes in the larger graph.
We show that our method leads to significant improvements with respect to the state-of-the-art algorithms for each of these tasks.
arXiv Detail & Related papers (2020-03-12T22:31:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.