Boundary Graph Neural Networks for 3D Simulations
- URL: http://arxiv.org/abs/2106.11299v7
- Date: Thu, 20 Apr 2023 17:55:47 GMT
- Title: Boundary Graph Neural Networks for 3D Simulations
- Authors: Andreas Mayr, Sebastian Lehner, Arno Mayrhofer, Christoph Kloss, Sepp
Hochreiter, Johannes Brandstetter
- Abstract summary: Boundary Graph Neural Networks (BGNNs) are tested on complex 3D granular flow processes of hoppers, rotating drums and mixers.
BGNNs are able to accurately reproduce 3D granular flows within simulation uncertainties over hundreds of thousands of simulation timesteps.
- Score: 6.041255257177852
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The abundance of data has given machine learning considerable momentum in
natural sciences and engineering, though modeling of physical processes is
often difficult. A particularly tough problem is the efficient representation
of geometric boundaries. Triangularized geometric boundaries are well
understood and ubiquitous in engineering applications. However, it is
notoriously difficult to integrate them into machine learning approaches due to
their heterogeneity with respect to size and orientation. In this work, we
introduce an effective theory to model particle-boundary interactions, which
leads to our new Boundary Graph Neural Networks (BGNNs) that dynamically modify
graph structures to obey boundary conditions. The new BGNNs are tested on
complex 3D granular flow processes of hoppers, rotating drums and mixers, which
are all standard components of modern industrial machinery but still have
complicated geometry. BGNNs are evaluated in terms of computational efficiency
as well as prediction accuracy of particle flows and mixing entropies. BGNNs
are able to accurately reproduce 3D granular flows within simulation
uncertainties over hundreds of thousands of simulation timesteps. Most notably,
in our experiments, particles stay within the geometric objects without using
handcrafted conditions or restrictions.
Related papers
- Three-dimensional granular flow simulation using graph neural
network-based learned simulator [2.153852088624324]
We use a graph neural network (GNN) to develop a simulator for granular flows.
The simulator reproduces the overall behaviors of column collapses with various aspect ratios.
The speed of GNS outperforms high-fidelity numerical simulators by 300 times.
arXiv Detail & Related papers (2023-11-13T15:54:09Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - NeuralClothSim: Neural Deformation Fields Meet the Thin Shell Theory [70.10550467873499]
We propose NeuralClothSim, a new quasistatic cloth simulator using thin shells.
Our memory-efficient solver operates on a new continuous coordinate-based surface representation called neural deformation fields.
arXiv Detail & Related papers (2023-08-24T17:59:54Z) - Graph Neural Network-based surrogate model for granular flows [2.153852088624324]
Granular flow dynamics is crucial for assessing various geotechnical risks, including landslides and debris flows.
Traditional continuum and discrete numerical methods are limited by their computational cost in simulating large-scale systems.
We develop a graph neural network-based simulator (GNS) that takes the current state of granular flow and predicts the next state using explicit integration by learning the local interaction laws.
arXiv Detail & Related papers (2023-05-09T07:28:12Z) - Fourier Neural Operator Surrogate Model to Predict 3D Seismic Waves
Propagation [0.0]
We use a high-fidelity simulation code, SEM3D, to build an extensive database of ground motions generated by 30,000 different geologies.
We show that the Fourier Neural Operator can produce accurate ground motion even when the underlying geology exhibits large heterogeneities.
Thanks to the generalizability of our database, we believe that our model can be used to assess the influence of geological features on ground motion.
arXiv Detail & Related papers (2023-04-20T12:01:58Z) - Learning rigid dynamics with face interaction graph networks [11.029321427540829]
We introduce the Face Interaction Graph Network (FIGNet) which computes interactions between mesh faces, rather than nodes.
FIGNet is around 4x more accurate in simulating complex shape interactions, while also 8x more computationally efficient on sparse, rigid meshes.
It can learn frictional dynamics directly from real-world data, and can be more accurate than analytical solvers given modest amounts of training data.
arXiv Detail & Related papers (2022-12-07T11:22:42Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
Graph Neural Networks (GNNs) have become a prevailing tool for learning physical dynamics.
Physical laws abide by symmetry, which is a vital inductive bias accounting for model generalization.
Our model achieves on average over 3% enhancement in contact prediction accuracy across 8 scenarios on Physion and 2X lower rollout MSE on RigidFall.
arXiv Detail & Related papers (2022-10-13T10:00:30Z) - Transformer with Implicit Edges for Particle-based Physics Simulation [135.77656965678196]
Transformer with Implicit Edges (TIE) captures the rich semantics of particle interactions in an edge-free manner.
We evaluate our model on diverse domains of varying complexity and materials.
arXiv Detail & Related papers (2022-07-22T03:45:29Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z) - Learning 3D Granular Flow Simulations [6.308272531414633]
We present a Graph Neural Networks approach towards accurate modeling of complex 3D granular flow simulation processes created by the discrete element method LIGGGHTS.
We discuss how to implement Graph Neural Networks that deal with 3D objects, boundary conditions, particle - particle, and particle - boundary interactions.
arXiv Detail & Related papers (2021-05-04T17:27:59Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.