Universal Domain Adaptation in Ordinal Regression
- URL: http://arxiv.org/abs/2106.11576v1
- Date: Tue, 22 Jun 2021 07:23:39 GMT
- Title: Universal Domain Adaptation in Ordinal Regression
- Authors: Chidlovskii Boris, Assem Sadek, Christian Wolf
- Abstract summary: We address the problem of universal domain adaptation (UDA) in ordinal regression (OR)
We show that the UDA techniques developed for classification and based on the clustering assumption, under-perform in OR settings.
We propose a method that complements the OR classifier with an auxiliary task of order learning, which plays the double role of discriminating between common and private instances, and expanding class labels to the private target images via ranking.
- Score: 11.703377306384695
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the problem of universal domain adaptation (UDA) in ordinal
regression (OR), which attempts to solve classification problems in which
labels are not independent, but follow a natural order. We show that the UDA
techniques developed for classification and based on the clustering assumption,
under-perform in OR settings. We propose a method that complements the OR
classifier with an auxiliary task of order learning, which plays the double
role of discriminating between common and private instances, and expanding
class labels to the private target images via ranking. Combined with
adversarial domain discrimination, our model is able to address the closed set,
partial and open set configurations. We evaluate our method on three face age
estimation datasets, and show that it outperforms the baseline methods.
Related papers
- Uncertainty-guided Open-Set Source-Free Unsupervised Domain Adaptation with Target-private Class Segregation [22.474866164542302]
UDA approaches commonly assume that source and target domains share the same labels space.
This paper considers the more challenging Source-Free Open-set Domain Adaptation (SF-OSDA) setting.
We propose a novel approach for SF-OSDA that exploits the granularity of target-private categories by segregating their samples into multiple unknown classes.
arXiv Detail & Related papers (2024-04-16T13:52:00Z) - Class-Specific Variational Auto-Encoder for Content-Based Image
Retrieval [95.42181254494287]
We propose a regularized loss for Variational Auto-Encoders (VAEs) forcing the model to focus on a given class of interest.
As a result, the model learns to discriminate the data belonging to the class of interest from any other possibility.
Experimental results show that the proposed method outperforms its competition in both in-domain and out-of-domain retrieval problems.
arXiv Detail & Related papers (2023-04-23T19:51:25Z) - Self-Paced Learning for Open-Set Domain Adaptation [50.620824701934]
Traditional domain adaptation methods presume that the classes in the source and target domains are identical.
Open-set domain adaptation (OSDA) addresses this limitation by allowing previously unseen classes in the target domain.
We propose a novel framework based on self-paced learning to distinguish common and unknown class samples.
arXiv Detail & Related papers (2023-03-10T14:11:09Z) - Unsupervised Domain Adaptation via Distilled Discriminative Clustering [45.39542287480395]
We re-cast the domain adaptation problem as discriminative clustering of target data.
We propose to jointly train the network using parallel, supervised learning objectives over labeled source data.
We conduct careful ablation studies and extensive experiments on five popular benchmark datasets.
arXiv Detail & Related papers (2023-02-23T13:03:48Z) - Polycentric Clustering and Structural Regularization for Source-free
Unsupervised Domain Adaptation [20.952542421577487]
Source-Free Domain Adaptation (SFDA) aims to solve the domain adaptation problem by transferring the knowledge learned from a pre-trained source model to an unseen target domain.
Most existing methods assign pseudo-labels to the target data by generating feature prototypes.
In this paper, a novel framework named PCSR is proposed to tackle SFDA via a novel intra-class Polycentric Clustering and Structural Regularization strategy.
arXiv Detail & Related papers (2022-10-14T02:20:48Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
We propose a new approach for binary classification from m U-sets for $mge2$.
Our key idea is to consider an auxiliary classification task called surrogate set classification (SSC)
arXiv Detail & Related papers (2021-02-01T07:36:38Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised domain adaptation (UDA) is to learn classification models that make predictions for unlabeled data on a target domain.
We propose a hybrid model of Structurally Regularized Deep Clustering, which integrates the regularized discriminative clustering of target data with a generative one.
Our proposed H-SRDC outperforms all the existing methods under both the inductive and transductive settings.
arXiv Detail & Related papers (2020-12-08T08:52:00Z) - Joint Visual and Temporal Consistency for Unsupervised Domain Adaptive
Person Re-Identification [64.37745443119942]
This paper jointly enforces visual and temporal consistency in the combination of a local one-hot classification and a global multi-class classification.
Experimental results on three large-scale ReID datasets demonstrate the superiority of proposed method in both unsupervised and unsupervised domain adaptive ReID tasks.
arXiv Detail & Related papers (2020-07-21T14:31:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.