Stock Market Analysis with Text Data: A Review
- URL: http://arxiv.org/abs/2106.12985v1
- Date: Wed, 23 Jun 2021 04:31:56 GMT
- Title: Stock Market Analysis with Text Data: A Review
- Authors: Kamaladdin Fataliyev, Aneesh Chivukula, Mukesh Prasad and Wei Liu
- Abstract summary: Stock market movements are influenced by public and private information shared through news articles, company reports, and social media discussions.
The majority of studies in the literature are based on traditional approaches that come short in analyzing unstructured, vast textual data.
This study is to survey the main stock market analysis models, text representation techniques for financial market prediction, shortcomings of existing techniques, and propose promising directions for future research.
- Score: 7.789019365796933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stock market movements are influenced by public and private information
shared through news articles, company reports, and social media discussions.
Analyzing these vast sources of data can give market participants an edge to
make profit. However, the majority of the studies in the literature are based
on traditional approaches that come short in analyzing unstructured, vast
textual data. In this study, we provide a review on the immense amount of
existing literature of text-based stock market analysis. We present input data
types and cover main textual data sources and variations. Feature
representation techniques are then presented. Then, we cover the analysis
techniques and create a taxonomy of the main stock market forecast models.
Importantly, we discuss representative work in each category of the taxonomy,
analyzing their respective contributions. Finally, this paper shows the
findings on unaddressed open problems and gives suggestions for future work.
The aim of this study is to survey the main stock market analysis models, text
representation techniques for financial market prediction, shortcomings of
existing techniques, and propose promising directions for future research.
Related papers
- A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
Large language models (LLMs) have unlocked novel opportunities for machine learning applications in the financial domain.
We explore the application of LLMs on various financial tasks, focusing on their potential to transform traditional practices and drive innovation.
We highlight this survey for categorizing the existing literature into key application areas, including linguistic tasks, sentiment analysis, financial time series, financial reasoning, agent-based modeling, and other applications.
arXiv Detail & Related papers (2024-06-15T16:11:35Z) - BERTopic-Driven Stock Market Predictions: Unraveling Sentiment Insights [0.0]
We employ BERTopic, an advanced NLP technique, to analyze the sentiment of topics derived from stock market comments.
Our methodology integrates this sentiment analysis with various deep learning models, renowned for their effectiveness in time series and stock prediction tasks.
The results indicate that topics in stock market comments provide implicit, valuable insights into stock market volatility and price trends.
arXiv Detail & Related papers (2024-04-02T15:50:10Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
We release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data.
We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task.
arXiv Detail & Related papers (2024-03-19T09:45:33Z) - Effect of Leaders Voice on Financial Market: An Empirical Deep Learning Expedition on NASDAQ, NSE, and Beyond [1.6622844933418388]
Deep learning based models are proposed to predict the trend of financial market based on NLP analysis of the twitter handles of leaders of different fields.
The Indian and USA financial markets are explored in the present work where as other markets can be taken in future.
arXiv Detail & Related papers (2024-03-18T18:19:08Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [58.6354685593418]
This paper proposes several article-level, field-normalized, and large language model-empowered bibliometric indicators to evaluate reviews.
The newly emerging AI-generated literature reviews are also appraised.
This work offers insights into the current challenges of literature reviews and envisions future directions for their development.
arXiv Detail & Related papers (2024-02-20T11:28:50Z) - Question-focused Summarization by Decomposing Articles into Facts and
Opinions and Retrieving Entities [0.0]
This research focuses on utilizing natural language processing techniques to predict stock price fluctuations.
The proposed approach includes the identification of salient facts and events from news articles.
The research aims to establish relationships between companies and entities through the analysis of Wikipedia data and articles from the Economist.
arXiv Detail & Related papers (2023-10-07T17:37:48Z) - A Survey of Data Pricing for Data Marketplaces [77.3189288320768]
This paper attempts to comprehensively review the state-of-the-art on existing data pricing studies.
Our key contribution lies in a new taxonomy of data pricing studies that unifies different attributes determining data prices.
arXiv Detail & Related papers (2023-03-07T04:35:56Z) - Stock Market Prediction via Deep Learning Techniques: A Survey [24.88558334340833]
This paper provides a structured overview of the research on stock market prediction focusing on deep learning techniques.
We present four elaborated subtasks of stock market prediction and propose a novel taxonomy to summarize the state-of-the-art models.
In addition, we provide detailed statistics on the datasets and evaluation metrics commonly used in the stock market.
arXiv Detail & Related papers (2022-12-24T11:32:17Z) - OSOUM Framework for Trading Data Research [79.0383470835073]
We supply, to the best of our knowledge, the first open source simulation platform, Open SOUrce Market Simulator (OSOUM) to analyze trading markets and specifically data markets.
We describe and implement a specific data market model, consisting of two types of agents: sellers who own various datasets available for acquisition, and buyers searching for relevant and beneficial datasets for purchase.
Although commercial frameworks, intended for handling data markets, already exist, we provide a free and extensive end-to-end research tool for simulating possible behavior for both buyers and sellers participating in (data) markets.
arXiv Detail & Related papers (2021-02-18T09:20:26Z) - Text analysis in financial disclosures [0.0]
Most of the information in a firm's financial disclosures is in unstructured text.
Researchers have started analyzing text content in disclosures recently.
This work contributes to disclosure analysis methods by highlighting the limitations of the current focus on sentiment metrics.
arXiv Detail & Related papers (2021-01-06T17:45:40Z) - A Survey on Text Classification: From Shallow to Deep Learning [83.47804123133719]
The last decade has seen a surge of research in this area due to the unprecedented success of deep learning.
This paper fills the gap by reviewing the state-of-the-art approaches from 1961 to 2021.
We create a taxonomy for text classification according to the text involved and the models used for feature extraction and classification.
arXiv Detail & Related papers (2020-08-02T00:09:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.