AutoAdapt: Automated Segmentation Network Search for Unsupervised Domain
Adaptation
- URL: http://arxiv.org/abs/2106.13227v1
- Date: Thu, 24 Jun 2021 17:59:02 GMT
- Title: AutoAdapt: Automated Segmentation Network Search for Unsupervised Domain
Adaptation
- Authors: Xueqing Deng, Yi Zhu, Yuxin Tian, Shawn Newsam
- Abstract summary: We perform neural architecture search (NAS) to provide architecture-level perspective and analysis for domain adaptation.
We propose bridging this gap by using maximum mean discrepancy and regional weighted entropy to estimate the accuracy metric.
- Score: 4.793219747021116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural network-based semantic segmentation has achieved remarkable results
when large amounts of annotated data are available, that is, in the supervised
case. However, such data is expensive to collect and so methods have been
developed to adapt models trained on related, often synthetic data for which
labels are readily available. Current adaptation approaches do not consider the
dependence of the generalization/transferability of these models on network
architecture. In this paper, we perform neural architecture search (NAS) to
provide architecture-level perspective and analysis for domain adaptation. We
identify the optimization gap that exists when searching architectures for
unsupervised domain adaptation which makes this NAS problem uniquely difficult.
We propose bridging this gap by using maximum mean discrepancy and regional
weighted entropy to estimate the accuracy metric. Experimental results on
several widely adopted benchmarks show that our proposed AutoAdapt framework
indeed discovers architectures that improve the performance of a number of
existing adaptation techniques.
Related papers
- Adaptable Embeddings Network (AEN) [49.1574468325115]
We introduce Adaptable Embeddings Networks (AEN), a novel dual-encoder architecture using Kernel Density Estimation (KDE)
AEN allows for runtime adaptation of classification criteria without retraining and is non-autoregressive.
The architecture's ability to preprocess and cache condition embeddings makes it ideal for edge computing applications and real-time monitoring systems.
arXiv Detail & Related papers (2024-11-21T02:15:52Z) - POMONAG: Pareto-Optimal Many-Objective Neural Architecture Generator [4.09225917049674]
Transferable NAS has emerged, generalizing the search process from dataset-dependent to task-dependent.
This paper introduces POMONAG, extending DiffusionNAG via a many-optimal diffusion process.
Results were validated on two search spaces -- NAS201 and MobileNetV3 -- and evaluated across 15 image classification datasets.
arXiv Detail & Related papers (2024-09-30T16:05:29Z) - Structural Pruning of Pre-trained Language Models via Neural Architecture Search [7.833790713816726]
Pre-trained language models (PLM) mark the state-of-the-art for natural language understanding task when fine-tuned on labeled data.
This paper explores neural architecture search (NAS) for structural pruning to find sub-parts of the fine-tuned network that optimally trade-off efficiency.
arXiv Detail & Related papers (2024-05-03T17:34:57Z) - Slimmable Domain Adaptation [112.19652651687402]
We introduce a simple framework, Slimmable Domain Adaptation, to improve cross-domain generalization with a weight-sharing model bank.
Our framework surpasses other competing approaches by a very large margin on multiple benchmarks.
arXiv Detail & Related papers (2022-06-14T06:28:04Z) - SuperNet in Neural Architecture Search: A Taxonomic Survey [14.037182039950505]
This survey focuses on the supernet optimization that builds a neural network that assembles all the architectures as its sub models by using weight sharing.
We aim to accomplish that by proposing them as solutions to the common challenges found in the literature: data-side optimization, poor rank correlation alleviation, and transferable NAS for a number of deployment scenarios.
arXiv Detail & Related papers (2022-04-08T08:29:52Z) - Temporal Convolution Domain Adaptation Learning for Crops Growth
Prediction [5.966652553573454]
We construct an innovative network architecture based on domain adaptation learning to predict crops growth curves with limited available crop data.
We are the first to use the temporal convolution filters as the backbone to construct a domain adaptation network architecture.
Results show that the proposed temporal convolution-based network architecture outperforms all benchmarks not only in accuracy but also in model size and convergence rate.
arXiv Detail & Related papers (2022-02-24T14:22:36Z) - AdaXpert: Adapting Neural Architecture for Growing Data [63.30393509048505]
In real-world applications, data often come in a growing manner, where the data volume and the number of classes may increase dynamically.
Given the increasing data volume or the number of classes, one has to instantaneously adjust the neural model capacity to obtain promising performance.
Existing methods either ignore the growing nature of data or seek to independently search an optimal architecture for a given dataset.
arXiv Detail & Related papers (2021-07-01T07:22:05Z) - Redefining Neural Architecture Search of Heterogeneous Multi-Network
Models by Characterizing Variation Operators and Model Components [71.03032589756434]
We investigate the effect of different variation operators in a complex domain, that of multi-network heterogeneous neural models.
We characterize both the variation operators, according to their effect on the complexity and performance of the model; and the models, relying on diverse metrics which estimate the quality of the different parts composing it.
arXiv Detail & Related papers (2021-06-16T17:12:26Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Smooth Variational Graph Embeddings for Efficient Neural Architecture
Search [41.62970837629573]
We propose a two-sided variational graph autoencoder, which allows to smoothly encode and accurately reconstruct neural architectures from various search spaces.
We evaluate the proposed approach on neural architectures defined by the ENAS approach, the NAS-Bench-101 and the NAS-Bench-201 search spaces.
arXiv Detail & Related papers (2020-10-09T17:05:41Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
Domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them.
We propose a generic framework based on graph embedding.
We show that the proposed approach leads to a powerful Domain Adaptation framework.
arXiv Detail & Related papers (2020-03-09T12:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.