Experimental Quantum Embedding for Machine Learning
- URL: http://arxiv.org/abs/2106.13835v1
- Date: Fri, 25 Jun 2021 18:19:50 GMT
- Title: Experimental Quantum Embedding for Machine Learning
- Authors: Ilaria Gianani, Ivana Mastroserio, Lorenzo Buffoni, Natalia Bruno,
Ludovica Donati, Valeria Cimini, Marco Barbieri, Francesco S. Cataliotti, and
Filippo Caruso
- Abstract summary: We show how different platforms could work in a complementary fashion to embed classical data into quantum ones.
These studies might pave the way for future investigations on quantum machine learning techniques.
- Score: 7.31365367571807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The classification of big data usually requires a mapping onto new data
clusters which can then be processed by machine learning algorithms by means of
more efficient and feasible linear separators. Recently, Lloyd et al. have
advanced the proposal to embed classical data into quantum ones: these live in
the more complex Hilbert space where they can get split into linearly separable
clusters. Here, we implement these ideas by engineering two different
experimental platforms, based on quantum optics and ultra-cold atoms
respectively, where we adapt and numerically optimize the quantum embedding
protocol by deep learning methods, and test it for some trial classical data.
We perform also a similar analysis on the Rigetti superconducting quantum
computer. Therefore, we find that the quantum embedding approach successfully
works also at the experimental level and, in particular, we show how different
platforms could work in a complementary fashion to achieve this task. These
studies might pave the way for future investigations on quantum machine
learning techniques especially based on hybrid quantum technologies.
Related papers
- Train on classical, deploy on quantum: scaling generative quantum machine learning to a thousand qubits [0.27309692684728604]
We show that instantaneous generative models based on quantum circuits can be trained efficiently on classical hardware.
By combining our approach with a data-dependent parameter initialisation strategy, we do not encounter issues of barren plateaus.
We find that the quantum models can successfully learn from high dimensional data, and perform surprisingly well compared to simple energy-based classical generative models.
arXiv Detail & Related papers (2025-03-04T19:00:02Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Benchmarking quantum machine learning kernel training for classification tasks [0.0]
This work performs a benchmark study of Quantum Kernel Estimation (QKE) and Quantum Kernel Training (QKT) with a focus on classification tasks.
Two quantum feature mappings, namely ZZFeatureMap and CovariantFeatureMap, are analyzed in this context.
Experimental results indicate that quantum methods exhibit varying performance across different datasets.
arXiv Detail & Related papers (2024-08-17T10:53:06Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
We develop a quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data.
We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks.
Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning.
arXiv Detail & Related papers (2024-07-02T18:00:00Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - VQE-generated Quantum Circuit Dataset for Machine Learning [0.5658123802733283]
We provide a dataset of quantum circuits optimized by variational quantum eigensolver.
We show that this dataset can be easily learned using quantum methods.
arXiv Detail & Related papers (2023-02-20T04:08:44Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Entangled Datasets for Quantum Machine Learning [0.0]
We argue that one should instead employ quantum datasets composed of quantum states.
We show how a quantum neural network can be trained to generate the states in the NTangled dataset.
We also consider an alternative entanglement-based dataset, which is scalable and is composed of states prepared by quantum circuits.
arXiv Detail & Related papers (2021-09-08T02:20:13Z) - Nearest Centroid Classification on a Trapped Ion Quantum Computer [57.5195654107363]
We design a quantum Nearest Centroid classifier, using techniques for efficiently loading classical data into quantum states and performing distance estimations.
We experimentally demonstrate it on a 11-qubit trapped-ion quantum machine, matching the accuracy of classical nearest centroid classifiers for the MNIST handwritten digits dataset and achieving up to 100% accuracy for 8-dimensional synthetic data.
arXiv Detail & Related papers (2020-12-08T01:10:30Z) - Quantum Machine Learning for Particle Physics using a Variational
Quantum Classifier [0.0]
We propose a novel hybrid variational quantum classifier that combines the quantum gradient descent method with steepest gradient descent to optimise the parameters of the network.
We find that this algorithm has a better learning outcome than a classical neural network or a quantum machine learning method trained with a non-quantum optimisation method.
arXiv Detail & Related papers (2020-10-14T18:05:49Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.