Discovering Generalizable Skills via Automated Generation of Diverse
Tasks
- URL: http://arxiv.org/abs/2106.13935v1
- Date: Sat, 26 Jun 2021 03:41:51 GMT
- Title: Discovering Generalizable Skills via Automated Generation of Diverse
Tasks
- Authors: Kuan Fang, Yuke Zhu, Silvio Savarese, Li Fei-Fei
- Abstract summary: We propose a method to discover generalizable skills via automated generation of a diverse set of tasks.
As opposed to prior work on unsupervised discovery of skills, our method pairs each skill with a unique task produced by a trainable task generator.
A task discriminator defined on the robot behaviors in the generated tasks is jointly trained to estimate the evidence lower bound of the diversity objective.
The learned skills can then be composed in a hierarchical reinforcement learning algorithm to solve unseen target tasks.
- Score: 82.16392072211337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The learning efficiency and generalization ability of an intelligent agent
can be greatly improved by utilizing a useful set of skills. However, the
design of robot skills can often be intractable in real-world applications due
to the prohibitive amount of effort and expertise that it requires. In this
work, we introduce Skill Learning In Diversified Environments (SLIDE), a method
to discover generalizable skills via automated generation of a diverse set of
tasks. As opposed to prior work on unsupervised discovery of skills which
incentivizes the skills to produce different outcomes in the same environment,
our method pairs each skill with a unique task produced by a trainable task
generator. To encourage generalizable skills to emerge, our method trains each
skill to specialize in the paired task and maximizes the diversity of the
generated tasks. A task discriminator defined on the robot behaviors in the
generated tasks is jointly trained to estimate the evidence lower bound of the
diversity objective. The learned skills can then be composed in a hierarchical
reinforcement learning algorithm to solve unseen target tasks. We demonstrate
that the proposed method can effectively learn a variety of robot skills in two
tabletop manipulation domains. Our results suggest that the learned skills can
effectively improve the robot's performance in various unseen target tasks
compared to existing reinforcement learning and skill learning methods.
Related papers
- Unsupervised Skill Discovery for Robotic Manipulation through Automatic Task Generation [17.222197596599685]
We propose a Skill Learning approach that discovers composable behaviors by solving a large number of autonomously generated tasks.
Our method learns skills allowing the robot to consistently and robustly interact with objects in its environment.
The learned skills can be used to solve a set of unseen manipulation tasks, in simulation as well as on a real robotic platform.
arXiv Detail & Related papers (2024-10-07T09:19:13Z) - Practice Makes Perfect: Planning to Learn Skill Parameter Policies [34.51008914846429]
In this work, we focus on the active learning problem of choosing which skills to practice to maximize expected future task success.
We propose that the robot should estimate the competence of each skill, extrapolate the competence, and situate the skill in the task distribution through competence-aware planning.
This approach is implemented within a fully autonomous system where the robot repeatedly plans, practices, and learns without any environment resets.
arXiv Detail & Related papers (2024-02-22T23:58:26Z) - Learning Options via Compression [62.55893046218824]
We propose a new objective that combines the maximum likelihood objective with a penalty on the description length of the skills.
Our objective learns skills that solve downstream tasks in fewer samples compared to skills learned from only maximizing likelihood.
arXiv Detail & Related papers (2022-12-08T22:34:59Z) - Active Task Randomization: Learning Robust Skills via Unsupervised
Generation of Diverse and Feasible Tasks [37.73239471412444]
We introduce Active Task Randomization (ATR), an approach that learns robust skills through the unsupervised generation of training tasks.
ATR selects suitable tasks, which consist of an initial environment state and manipulation goal, for learning robust skills by balancing the diversity and feasibility of the tasks.
We demonstrate that the learned skills can be composed by a task planner to solve unseen sequential manipulation problems based on visual inputs.
arXiv Detail & Related papers (2022-11-11T11:24:55Z) - Example-Driven Model-Based Reinforcement Learning for Solving
Long-Horizon Visuomotor Tasks [85.56153200251713]
We introduce EMBR, a model-based RL method for learning primitive skills that are suitable for completing long-horizon visuomotor tasks.
On a Franka Emika robot arm, we find that EMBR enables the robot to complete three long-horizon visuomotor tasks at 85% success rate.
arXiv Detail & Related papers (2021-09-21T16:48:07Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - MT-Opt: Continuous Multi-Task Robotic Reinforcement Learning at Scale [103.7609761511652]
We show how a large-scale collective robotic learning system can acquire a repertoire of behaviors simultaneously.
New tasks can be continuously instantiated from previously learned tasks.
We train and evaluate our system on a set of 12 real-world tasks with data collected from 7 robots.
arXiv Detail & Related papers (2021-04-16T16:38:02Z) - SKID RAW: Skill Discovery from Raw Trajectories [23.871402375721285]
It is desirable to only demonstrate full task executions instead of all individual skills.
We propose a novel approach that simultaneously learns to segment trajectories into reoccurring patterns.
The approach learns a skill conditioning that can be used to understand possible sequences of skills.
arXiv Detail & Related papers (2021-03-26T17:27:13Z) - Relative Variational Intrinsic Control [11.328970848714919]
Relative Variational Intrinsic Control (RVIC) incentivizes learning skills that are distinguishable in how they change the agent's relationship to its environment.
We show how RVIC skills are more useful than skills discovered by existing methods when used in hierarchical reinforcement learning.
arXiv Detail & Related papers (2020-12-14T18:59:23Z) - Emergent Real-World Robotic Skills via Unsupervised Off-Policy
Reinforcement Learning [81.12201426668894]
We develop efficient reinforcement learning methods that acquire diverse skills without any reward function, and then repurpose these skills for downstream tasks.
We show that our proposed algorithm provides substantial improvement in learning efficiency, making reward-free real-world training feasible.
We also demonstrate that the learned skills can be composed using model predictive control for goal-oriented navigation, without any additional training.
arXiv Detail & Related papers (2020-04-27T17:38:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.