GANSpeech: Adversarial Training for High-Fidelity Multi-Speaker Speech
Synthesis
- URL: http://arxiv.org/abs/2106.15153v1
- Date: Tue, 29 Jun 2021 08:15:30 GMT
- Title: GANSpeech: Adversarial Training for High-Fidelity Multi-Speaker Speech
Synthesis
- Authors: Jinhyeok Yang, Jae-Sung Bae, Taejun Bak, Youngik Kim, Hoon-Young Cho
- Abstract summary: GANSpeech is a high-fidelity multi-speaker TTS model that adopts the adversarial training method to a non-autoregressive multi-speaker TTS model.
In the subjective listening tests, GANSpeech significantly outperformed the baseline multi-speaker FastSpeech and FastSpeech2 models.
- Score: 6.632254395574993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in neural multi-speaker text-to-speech (TTS) models have
enabled the generation of reasonably good speech quality with a single model
and made it possible to synthesize the speech of a speaker with limited
training data. Fine-tuning to the target speaker data with the multi-speaker
model can achieve better quality, however, there still exists a gap compared to
the real speech sample and the model depends on the speaker. In this work, we
propose GANSpeech, which is a high-fidelity multi-speaker TTS model that adopts
the adversarial training method to a non-autoregressive multi-speaker TTS
model. In addition, we propose simple but efficient automatic scaling methods
for feature matching loss used in adversarial training. In the subjective
listening tests, GANSpeech significantly outperformed the baseline
multi-speaker FastSpeech and FastSpeech2 models, and showed a better MOS score
than the speaker-specific fine-tuned FastSpeech2.
Related papers
- SelectTTS: Synthesizing Anyone's Voice via Discrete Unit-Based Frame Selection [7.6732312922460055]
We propose SelectTTS, a novel method to select the appropriate frames from the target speaker and decode using frame-level self-supervised learning (SSL) features.
We show that this approach can effectively capture speaker characteristics for unseen speakers, and achieves comparable results to other multi-speaker text-to-speech frameworks in both objective and subjective metrics.
arXiv Detail & Related papers (2024-08-30T17:34:46Z) - Pheme: Efficient and Conversational Speech Generation [52.34331755341856]
We introduce the Pheme model series that offers compact yet high-performing conversational TTS models.
It can be trained efficiently on smaller-scale conversational data, cutting data demands by more than 10x but still matching the quality of the autoregressive TTS models.
arXiv Detail & Related papers (2024-01-05T14:47:20Z) - Any-speaker Adaptive Text-To-Speech Synthesis with Diffusion Models [65.28001444321465]
Grad-StyleSpeech is an any-speaker adaptive TTS framework based on a diffusion model.
It can generate highly natural speech with extremely high similarity to target speakers' voice, given a few seconds of reference speech.
It significantly outperforms speaker-adaptive TTS baselines on English benchmarks.
arXiv Detail & Related papers (2022-11-17T07:17:24Z) - Meta-TTS: Meta-Learning for Few-Shot Speaker Adaptive Text-to-Speech [62.95422526044178]
We use Model Agnostic Meta-Learning (MAML) as the training algorithm of a multi-speaker TTS model.
We show that Meta-TTS can synthesize high speaker-similarity speech from few enrollment samples with fewer adaptation steps than the speaker adaptation baseline.
arXiv Detail & Related papers (2021-11-07T09:53:31Z) - GC-TTS: Few-shot Speaker Adaptation with Geometric Constraints [36.07346889498981]
We propose GC-TTS which achieves high-quality speaker adaptation with significantly improved speaker similarity.
A TTS model is pre-trained for base speakers with a sufficient amount of data, and then fine-tuned for novel speakers on a few minutes of data with two geometric constraints.
The experimental results demonstrate that GC-TTS generates high-quality speech from only a few minutes of training data, outperforming standard techniques in terms of speaker similarity to the target speaker.
arXiv Detail & Related papers (2021-08-16T04:25:31Z) - Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation [63.561944239071615]
StyleSpeech is a new TTS model which synthesizes high-quality speech and adapts to new speakers.
With SALN, our model effectively synthesizes speech in the style of the target speaker even from single speech audio.
We extend it to Meta-StyleSpeech by introducing two discriminators trained with style prototypes, and performing episodic training.
arXiv Detail & Related papers (2021-06-06T15:34:11Z) - Investigating on Incorporating Pretrained and Learnable Speaker
Representations for Multi-Speaker Multi-Style Text-to-Speech [54.75722224061665]
In this work, we investigate different speaker representations and proposed to integrate pretrained and learnable speaker representations.
The FastSpeech 2 model combined with both pretrained and learnable speaker representations shows great generalization ability on few-shot speakers.
arXiv Detail & Related papers (2021-03-06T10:14:33Z) - Semi-supervised Learning for Multi-speaker Text-to-speech Synthesis
Using Discrete Speech Representation [125.59372403631006]
We propose a semi-supervised learning approach for multi-speaker text-to-speech (TTS)
A multi-speaker TTS model can learn from the untranscribed audio via the proposed encoder-decoder framework with discrete speech representation.
We found the model can benefit from the proposed semi-supervised learning approach even when part of the unpaired speech data is noisy.
arXiv Detail & Related papers (2020-05-16T15:47:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.