Hybrid algorithms to solve linear systems of equations with limited
qubit resources
- URL: http://arxiv.org/abs/2106.15485v2
- Date: Sun, 4 Jul 2021 14:53:35 GMT
- Title: Hybrid algorithms to solve linear systems of equations with limited
qubit resources
- Authors: Fang Gao, Guojian Wu, Mingyu Yang, Wei Cui and Feng Shuang
- Abstract summary: The complexity using classical methods increases linearly with the size of equations.
The HHL algorithm proposed by Harrow et al. achieves exponential acceleration compared with the best classical algorithm.
Three hybrid iterative phase estimation algorithms (HIPEA) are designed based on the iterative phase estimation algorithm in this paper.
- Score: 7.111403318486868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The solution of linear systems of equations is a very frequent operation and
thus important in many fields. The complexity using classical methods increases
linearly with the size of equations. The HHL algorithm proposed by Harrow et
al. achieves exponential acceleration compared with the best classical
algorithm. However, it has a relatively high demand for qubit resources and the
solution $\left| x \right\rangle $ is in a normalized form. Assuming that the
eigenvalues of the coefficient matrix of the linear systems of equations can be
represented perfectly by finite binary number strings, three hybrid iterative
phase estimation algorithms (HIPEA) are designed based on the iterative phase
estimation algorithm in this paper. The complexity is transferred to the
measurement operation in an iterative way, and thus the demand of qubit
resources is reduced in our hybrid algorithms. Moreover, the solution is stored
in a classical register instead of a quantum register, so the exact
unnormalized solution can be obtained. The required qubit resources in the
three HIPEA algorithms are different. HIPEA-1 only needs one single ancillary
qubit. The number of ancillary qubits in HIPEA-2 is equal to the number of
nondegenerate eigenvalues of the coefficient matrix of linear systems of
equations. HIPEA-3 is designed with a flexible number of ancillary qubits. The
HIPEA algorithms proposed in this paper broadens the application range of
quantum computation in solving linear systems of equations by avoiding the
problem that quantum programs may not be used to solve linear systems of
equations due to the lack of qubit resources.
Related papers
- A Catalyst Framework for the Quantum Linear System Problem via the Proximal Point Algorithm [9.804179673817574]
We propose a new quantum algorithm for the quantum linear system problem (QLSP) inspired by the classical proximal point algorithm (PPA)
Our proposed method can be viewed as a meta-algorithm that allows inverting a modified matrix via an existing texttimattQLSP_solver.
By carefully choosing the step size $eta$, the proposed algorithm can effectively precondition the linear system to mitigate the dependence on condition numbers that hindered the applicability of previous approaches.
arXiv Detail & Related papers (2024-06-19T23:15:35Z) - An Efficient Quantum Algorithm for Linear System Problem in Tensor Format [4.264200809234798]
We propose a quantum algorithm based on the recent advances on adiabatic-inspired QLSA.
We rigorously show that the total complexity of our implementation is polylogarithmic in the dimension.
arXiv Detail & Related papers (2024-03-28T20:37:32Z) - Hybrid quantum-classical and quantum-inspired classical algorithms for
solving banded circulant linear systems [0.8192907805418583]
We present an efficient algorithm based on convex optimization of combinations of quantum states to solve for banded circulant linear systems.
By decomposing banded circulant matrices into cyclic permutations, our approach produces approximate solutions to such systems with a combination of quantum states linear to $K$.
We validate our methods with classical simulations and actual IBM quantum computer implementation, showcasing their applicability for solving physical problems such as heat transfer.
arXiv Detail & Related papers (2023-09-20T16:27:16Z) - Solving Systems of Linear Equations: HHL from a Tensor Networks Perspective [39.58317527488534]
We present an algorithm for solving systems of linear equations based on the HHL algorithm with a novel qudits methodology.
We perform a quantum-inspired version on tensor networks, taking advantage of their ability to perform non-unitary operations such as projection.
arXiv Detail & Related papers (2023-09-11T08:18:41Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
We show that useful information can be extracted from the quantum-mechanical implementation of Harrow-Hassidim-Lloyd (HHL)
This paper shows, however, that useful information can be extracted from the quantum-mechanical implementation of HHL, and used to reduce the complexity of finding the solution on the classical side.
arXiv Detail & Related papers (2022-10-23T11:58:05Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
We introduce a new inference scheme that avoids explicit construction of the covariance matrix.
Our approach couples a little-known diagonal estimation result from numerical linear algebra with the conjugate gradient algorithm.
On several simulations, our method scales better than existing approaches in computation time and memory.
arXiv Detail & Related papers (2022-02-25T16:35:26Z) - Quantum algorithms for matrix operations and linear systems of equations [65.62256987706128]
We propose quantum algorithms for matrix operations using the "Sender-Receiver" model.
These quantum protocols can be used as subroutines in other quantum schemes.
arXiv Detail & Related papers (2022-02-10T08:12:20Z) - Algorithmic Solution for Systems of Linear Equations, in
$\mathcal{O}(mn)$ time [0.0]
We present a novel algorithm attaining excessively fast, the sought solution of linear systems of equations.
The execution time is very short compared with state-of-the-art methods.
The paper also comprises a theoretical proof for the algorithmic convergence.
arXiv Detail & Related papers (2021-04-26T13:40:31Z) - Linear embedding of nonlinear dynamical systems and prospects for
efficient quantum algorithms [74.17312533172291]
We describe a method for mapping any finite nonlinear dynamical system to an infinite linear dynamical system (embedding)
We then explore an approach for approximating the resulting infinite linear system with finite linear systems (truncation)
arXiv Detail & Related papers (2020-12-12T00:01:10Z) - Accelerating Feedforward Computation via Parallel Nonlinear Equation
Solving [106.63673243937492]
Feedforward computation, such as evaluating a neural network or sampling from an autoregressive model, is ubiquitous in machine learning.
We frame the task of feedforward computation as solving a system of nonlinear equations. We then propose to find the solution using a Jacobi or Gauss-Seidel fixed-point method, as well as hybrid methods of both.
Our method is guaranteed to give exactly the same values as the original feedforward computation with a reduced (or equal) number of parallelizable iterations, and hence reduced time given sufficient parallel computing power.
arXiv Detail & Related papers (2020-02-10T10:11:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.