Continuous Latent Process Flows
- URL: http://arxiv.org/abs/2106.15580v1
- Date: Tue, 29 Jun 2021 17:16:04 GMT
- Title: Continuous Latent Process Flows
- Authors: Ruizhi Deng, Marcus A. Brubaker, Greg Mori, Andreas M. Lehrmann
- Abstract summary: Partial observations of continuous time-series dynamics at arbitrary time stamps exist in many disciplines. Fitting this type of data using statistical models with continuous dynamics is not only promising at an intuitive level but also has practical benefits.
We tackle these challenges with continuous latent process flows (CLPF), a principled architecture decoding continuous latent processes into continuous observable processes using a time-dependent normalizing flow driven by a differential equation.
Our ablation studies demonstrate the effectiveness of our contributions in various inference tasks on irregular time grids.
- Score: 47.267251969492484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Partial observations of continuous time-series dynamics at arbitrary time
stamps exist in many disciplines. Fitting this type of data using statistical
models with continuous dynamics is not only promising at an intuitive level but
also has practical benefits, including the ability to generate continuous
trajectories and to perform inference on previously unseen time stamps. Despite
exciting progress in this area, the existing models still face challenges in
terms of their representational power and the quality of their variational
approximations. We tackle these challenges with continuous latent process flows
(CLPF), a principled architecture decoding continuous latent processes into
continuous observable processes using a time-dependent normalizing flow driven
by a stochastic differential equation. To optimize our model using maximum
likelihood, we propose a novel piecewise construction of a variational
posterior process and derive the corresponding variational lower bound using
trajectory re-weighting. Our ablation studies demonstrate the effectiveness of
our contributions in various inference tasks on irregular time grids.
Comparisons to state-of-the-art baselines show our model's favourable
performance on both synthetic and real-world time-series data.
Related papers
- A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
A non-stationary PGDS is proposed to allow the underlying transition matrices to evolve over time.
A fully-conjugate and efficient Gibbs sampler is developed to perform posterior simulation.
Experiments show that, in comparison with related models, the proposed non-stationary PGDS achieves improved predictive performance.
arXiv Detail & Related papers (2024-02-26T04:39:01Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - Variational latent discrete representation for time series modelling [0.0]
We introduce a latent data model where the discrete state is a Markov chain, which allows fast end-to-end training.
The performance of our generative model is assessed on a building management dataset and on the publicly available Electricity Transformer dataset.
arXiv Detail & Related papers (2023-06-27T08:15:05Z) - Neural Continuous-Discrete State Space Models for Irregularly-Sampled
Time Series [18.885471782270375]
NCDSSM employs auxiliary variables to disentangle recognition from dynamics, thus requiring amortized inference only for the auxiliary variables.
We propose three flexible parameterizations of the latent dynamics and an efficient training objective that marginalizes the dynamic states during inference.
Empirical results on multiple benchmark datasets show improved imputation and forecasting performance of NCDSSM over existing models.
arXiv Detail & Related papers (2023-01-26T18:45:04Z) - DynaConF: Dynamic Forecasting of Non-Stationary Time Series [4.286546152336783]
We propose a new method to model non-stationary conditional distributions over time.
We show that our model can adapt to non-stationary time series better than state-of-the-art deep learning solutions.
arXiv Detail & Related papers (2022-09-17T21:40:02Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Deep Explicit Duration Switching Models for Time Series [84.33678003781908]
We propose a flexible model that is capable of identifying both state- and time-dependent switching dynamics.
State-dependent switching is enabled by a recurrent state-to-switch connection.
An explicit duration count variable is used to improve the time-dependent switching behavior.
arXiv Detail & Related papers (2021-10-26T17:35:21Z) - Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows [40.9137348900942]
We propose a novel type of flow driven by a differential deformation of the Wiener process.
As a result, we obtain a rich time series model whose observable process inherits many of the appealing properties of its base process.
arXiv Detail & Related papers (2020-02-24T20:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.