Modeling displaced squeezed number states in waveguide arrays
- URL: http://arxiv.org/abs/2107.00062v1
- Date: Wed, 30 Jun 2021 19:05:07 GMT
- Title: Modeling displaced squeezed number states in waveguide arrays
- Authors: B.M. Villegas-Mart\'inez, H.M. Moya-Cessa and F. Soto-Eguibar
- Abstract summary: We present an exact analytical solution for a one-dimensional zigzag waveguide array with first and second neighbor interactions.
It is found that the waveguide system possess a classical analog to the displaced squeezed number states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an exact analytical solution for a one-dimensional zigzag
waveguide array with first and second neighbor interactions. It is found that
the waveguide system possess a classical analog to the displaced squeezed
number states. The exact solution was compared directly with the numerical
solution showing a perfect agreement between both results. The implication of a
linear index of refraction changing as a function of the site number is also
studied. In this case, we show that the first neighbor interaction strongly
influences the periodicity of Bloch oscillations.
Related papers
- Leading correction to the relativistic Foldy-Wouthuysen Hamiltonian [55.2480439325792]
We rigorously derive a leading correction in the weak-field approximation to the known relativistic Foldy-Wouthuysen Hamiltonian.
For Dirac particles, the relativistic wave equation of the second order is obtained with the correction similar to that to the Foldy-Wouthuysen Hamiltonian.
arXiv Detail & Related papers (2024-08-03T12:53:41Z) - On the validity of the rotating wave approximation for coupled harmonic oscillators [34.82692226532414]
We solve the dynamics analytically by employing tools from symplectic geometry.
We find that the squeezing present in the full Hamiltonian and in the initial state governs the deviation from the approximated evolution.
We also show that the rotating wave approximation is recovered for resonant frequencies and vanishing coupling to frequency ratio.
arXiv Detail & Related papers (2024-03-22T16:51:53Z) - Radiative transport in a periodic structure with band crossings [47.82887393172228]
We derive the semi-classical model for the Schr"odinger equation in arbitrary spatial dimensions.
We consider both deterministic and random scenarios.
As a specific application, we deduce the effective dynamics of a wave packet in graphene with randomness.
arXiv Detail & Related papers (2024-02-09T23:34:32Z) - Alternating Wentzel-Krammers-Brillouin Approximation for the
Schr\"odinger Equation: A Rediscovering of the Bremmers Series [0.0]
We propose an extension of the Wentzel-Kramers-Brillouin (WKB) approximation for solving the Schr"odinger equation.
It is shown that an alternating perturbation method can be used to decouple this set of equations, yielding the well known Bremmer series.
arXiv Detail & Related papers (2022-07-03T01:49:10Z) - Structural aspects of FRG in quantum tunnelling computations [68.8204255655161]
We probe both the unidimensional quartic harmonic oscillator and the double well potential.
Two partial differential equations for the potential V_k(varphi) and the wave function renormalization Z_k(varphi) are studied.
arXiv Detail & Related papers (2022-06-14T15:23:25Z) - An Accurate Pentadiagonal Matrix Solution for the Time-Dependent
Schr\"{o}dinger Equation [2.480301925841752]
We invoke the highly accurate five-point stencil to discretize the wave function onto an Implicit-Explicit pentadiagonal Crank-Nicolson scheme.
It is demonstrated that the resultant solutions are significantly more accurate than the standard ones.
arXiv Detail & Related papers (2022-05-26T16:16:56Z) - Testing de Broglie's double solution in the mesoscopic regime [0.0]
We present here solutions of a non-linear Schroedinger equation in presence of an arbitrary linear external potential.
These solutions are the product of the pilot wave with peaked solitons the velocity of which obeys the guidance equation derived by Louis de Broglie in 1926.
We discuss the possibility to reveal their existence by implementing a humpty-dumpty Stern-Gerlach interferometer in the mesoscopic regime.
arXiv Detail & Related papers (2022-01-04T15:31:37Z) - Intrinsic decoherence for the displaced harmonic oscillator [77.34726150561087]
We use the complete solution of the Milburn equation that describes intrinsic decoherence.
We calculate the expectation values of position quadrature, and the number operator in initial coherent and squeezed states.
arXiv Detail & Related papers (2021-12-06T03:15:43Z) - Intrinsic decoherence dynamics in the three-coupled harmonic oscillators
interaction [77.34726150561087]
We give an explicit solution for the complete equation, i.e., beyond the usual second order approximation used to arrive to the Lindblad form.
arXiv Detail & Related papers (2021-08-01T02:36:23Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Resummed Wentzel-Kramers-Brillouin Series: Quantization and Physical
Interpretation [0.0]
The Wentzel-Kramers-Brillouin (WKB) perturbative series is typically divergent and at best, impeding predictions beyond the first few leading-order effects.
Here, we report a closed-form formula that exactly resums the perturbative WKB series to all-orders for two turning point problem.
arXiv Detail & Related papers (2020-06-02T07:43:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.