Reparameterized Sampling for Generative Adversarial Networks
- URL: http://arxiv.org/abs/2107.00352v1
- Date: Thu, 1 Jul 2021 10:34:55 GMT
- Title: Reparameterized Sampling for Generative Adversarial Networks
- Authors: Yifei Wang, Yisen Wang, Jiansheng Yang, Zhouchen Lin
- Abstract summary: We propose REP-GAN, a novel sampling method that allows general dependent proposals by REizing the Markov chains into the latent space of the generator.
Empirically, extensive experiments on synthetic and real datasets demonstrate that our REP-GAN largely improves the sample efficiency and obtains better sample quality simultaneously.
- Score: 71.30132908130581
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, sampling methods have been successfully applied to enhance the
sample quality of Generative Adversarial Networks (GANs). However, in practice,
they typically have poor sample efficiency because of the independent proposal
sampling from the generator. In this work, we propose REP-GAN, a novel sampling
method that allows general dependent proposals by REParameterizing the Markov
chains into the latent space of the generator. Theoretically, we show that our
reparameterized proposal admits a closed-form Metropolis-Hastings acceptance
ratio. Empirically, extensive experiments on synthetic and real datasets
demonstrate that our REP-GAN largely improves the sample efficiency and obtains
better sample quality simultaneously.
Related papers
- A Block Metropolis-Hastings Sampler for Controllable Energy-based Text
Generation [78.81021361497311]
We develop a novel Metropolis-Hastings (MH) sampler that proposes re-writes of the entire sequence in each step via iterative prompting of a large language model.
Our new sampler allows for more efficient and accurate sampling from a target distribution and (b) allows generation length to be determined through the sampling procedure rather than fixed in advance.
arXiv Detail & Related papers (2023-12-07T18:30:15Z) - Optimal Budgeted Rejection Sampling for Generative Models [54.050498411883495]
Rejection sampling methods have been proposed to improve the performance of discriminator-based generative models.
We first propose an Optimal Budgeted Rejection Sampling scheme that is provably optimal.
Second, we propose an end-to-end method that incorporates the sampling scheme into the training procedure to further enhance the model's overall performance.
arXiv Detail & Related papers (2023-11-01T11:52:41Z) - Entropy-based Training Methods for Scalable Neural Implicit Sampler [15.978655106034113]
Efficiently sampling from un-normalized target distributions is a fundamental problem in scientific computing and machine learning.
In this paper, we propose an efficient and scalable neural implicit sampler that overcomes these limitations.
Our sampler can generate large batches of samples with low computational costs by leveraging a neural transformation that directly maps easily sampled latent vectors to target samples.
arXiv Detail & Related papers (2023-06-08T05:56:05Z) - Off-Policy RL Algorithms Can be Sample-Efficient for Continuous Control
via Sample Multiple Reuse [28.29966904455002]
We propose to train an off-policy RL agent via updating on a fixed sampled batch multiple times.
We name our method sample multiple reuse (SMR) and show the properties of Q-learning with SMR.
SMR significantly boosts the sample efficiency of the base methods across most of the evaluated tasks.
arXiv Detail & Related papers (2023-05-29T03:25:22Z) - Selectively increasing the diversity of GAN-generated samples [8.980453507536017]
We propose a novel method to selectively increase the diversity of GAN-generated samples.
We show the superiority of our method in a synthetic benchmark as well as a real-life scenario simulating data from the Zero Degree Calorimeter of ALICE experiment in CERN.
arXiv Detail & Related papers (2022-07-04T16:27:06Z) - Sampling from Discrete Energy-Based Models with Quality/Efficiency
Trade-offs [3.491202838583993]
Energy-Based Models (EBMs) allow for extremely flexible specifications of probability distributions.
They do not provide a mechanism for obtaining exact samples from these distributions.
We propose a new approximate sampling technique, Quasi Rejection Sampling (QRS), that allows for a trade-off between sampling efficiency and sampling quality.
arXiv Detail & Related papers (2021-12-10T17:51:37Z) - Sampling-Decomposable Generative Adversarial Recommender [84.05894139540048]
We propose a Sampling-Decomposable Generative Adversarial Recommender (SD-GAR)
In the framework, the divergence between some generator and the optimum is compensated by self-normalized importance sampling.
We extensively evaluate the proposed algorithm with five real-world recommendation datasets.
arXiv Detail & Related papers (2020-11-02T13:19:10Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
Building on the success of deep learning, Generative Adversarial Networks (GANs) provide a modern approach to learn a probability distribution from observed samples.
GANs often suffer from the mode collapse issue where the generator fails to capture all existing modes of the input distribution.
We take an information-theoretic approach and maximize a variational lower bound on the entropy of the generated samples to increase their diversity.
arXiv Detail & Related papers (2020-09-24T19:34:37Z) - Self-Adversarial Learning with Comparative Discrimination for Text
Generation [111.18614166615968]
We propose a novel self-adversarial learning (SAL) paradigm for improving GANs' performance in text generation.
During training, SAL rewards the generator when its currently generated sentence is found to be better than its previously generated samples.
Experiments on text generation benchmark datasets show that our proposed approach substantially improves both the quality and the diversity.
arXiv Detail & Related papers (2020-01-31T07:50:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.