Generating Synthetic Training Data for Deep Learning-Based UAV
Trajectory Prediction
- URL: http://arxiv.org/abs/2107.00422v1
- Date: Thu, 1 Jul 2021 13:08:31 GMT
- Title: Generating Synthetic Training Data for Deep Learning-Based UAV
Trajectory Prediction
- Authors: Stefan Becker and Ronny Hug and Wolfgang H\"ubner and Michael Arens
and Brendan T. Morris
- Abstract summary: We present an approach for generating synthetic trajectory data of unmanned-aerial-vehicles (UAVs) in image space.
We show that an RNN-based prediction model solely trained on the generated data can outperform classic reference models on a real-world UAV tracking dataset.
- Score: 11.241614693184323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based models, such as recurrent neural networks (RNNs), have
been applied to various sequence learning tasks with great success. Following
this, these models are increasingly replacing classic approaches in object
tracking applications for motion prediction. On the one hand, these models can
capture complex object dynamics with less modeling required, but on the other
hand, they depend on a large amount of training data for parameter tuning.
Towards this end, we present an approach for generating synthetic trajectory
data of unmanned-aerial-vehicles (UAVs) in image space. Since UAVs, or rather
quadrotors are dynamical systems, they can not follow arbitrary trajectories.
With the prerequisite that UAV trajectories fulfill a smoothness criterion
corresponding to a minimal change of higher-order motion, methods for planning
aggressive quadrotors flights can be utilized to generate optimal trajectories
through a sequence of 3D waypoints. By projecting these maneuver trajectories,
which are suitable for controlling quadrotors, to image space, a versatile
trajectory data set is realized. To demonstrate the applicability of the
synthetic trajectory data, we show that an RNN-based prediction model solely
trained on the generated data can outperform classic reference models on a
real-world UAV tracking dataset. The evaluation is done on the publicly
available ANTI-UAV dataset.
Related papers
- Spatiotemporal Implicit Neural Representation as a Generalized Traffic Data Learner [46.866240648471894]
Spatiotemporal Traffic Data (STTD) measures the complex dynamical behaviors of the multiscale transportation system.
We present a novel paradigm to address the STTD learning problem by parameterizing STTD as an implicit neural representation.
We validate its effectiveness through extensive experiments in real-world scenarios, showcasing applications from corridor to network scales.
arXiv Detail & Related papers (2024-05-06T06:23:06Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Interaction-Aware Personalized Vehicle Trajectory Prediction Using
Temporal Graph Neural Networks [8.209194305630229]
Existing methods mainly rely on generic trajectory predictions from large datasets.
We propose an approach for interaction-aware personalized vehicle trajectory prediction that incorporates temporal graph neural networks.
arXiv Detail & Related papers (2023-08-14T20:20:26Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - PreTraM: Self-Supervised Pre-training via Connecting Trajectory and Map [58.53373202647576]
We propose PreTraM, a self-supervised pre-training scheme for trajectory forecasting.
It consists of two parts: 1) Trajectory-Map Contrastive Learning, where we project trajectories and maps to a shared embedding space with cross-modal contrastive learning, and 2) Map Contrastive Learning, where we enhance map representation with contrastive learning on large quantities of HD-maps.
On top of popular baselines such as AgentFormer and Trajectron++, PreTraM boosts their performance by 5.5% and 6.9% relatively in FDE-10 on the challenging nuScenes dataset.
arXiv Detail & Related papers (2022-04-21T23:01:21Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - SLPC: a VRNN-based approach for stochastic lidar prediction and
completion in autonomous driving [63.87272273293804]
We propose a new LiDAR prediction framework that is based on generative models namely Variational Recurrent Neural Networks (VRNNs)
Our algorithm is able to address the limitations of previous video prediction frameworks when dealing with sparse data by spatially inpainting the depth maps in the upcoming frames.
We present a sparse version of VRNNs and an effective self-supervised training method that does not require any labels.
arXiv Detail & Related papers (2021-02-19T11:56:44Z) - Deep Learning Methods for Vessel Trajectory Prediction based on
Recurrent Neural Networks [13.193080011901381]
We propose sequence-to-sequence vessel trajectory prediction models based on encoder-decoder recurrent neural networks (RNNs)
The proposed architecture combines Long Short-Term Memory (LSTM) RNNs for sequence modeling to encode the observed data and generate future predictions with different intermediate aggregation layers to capture space-time dependencies in sequential data.
Experimental results on vessel trajectories from an AIS dataset made freely available by the Danish Maritime Authority show the effectiveness of deep-learning methods for trajectory prediction based on sequence-to-sequence neural networks.
arXiv Detail & Related papers (2021-01-07T11:05:47Z) - Pedestrian Trajectory Prediction with Convolutional Neural Networks [0.3787359747190393]
We propose a new approach to pedestrian trajectory prediction, with the introduction of a novel 2D convolutional model.
This new model outperforms recurrent models, and it achieves state-of-the-art results on the ETH and TrajNet datasets.
We also present an effective system to represent pedestrian positions and powerful data augmentation techniques.
arXiv Detail & Related papers (2020-10-12T15:51:01Z) - TrajGAIL: Generating Urban Vehicle Trajectories using Generative
Adversarial Imitation Learning [9.01310450044549]
This research suggests a generative modeling approach to learn the underlying distributions of urban vehicle trajectory data.
A generative model for urban vehicle trajectories can better generalize from training data by learning the underlying distribution of the training data.
TrajGAIL is a generative adversarial imitation learning framework for the urban vehicle trajectory generation.
arXiv Detail & Related papers (2020-07-28T13:17:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.