Ethics Sheets for AI Tasks
- URL: http://arxiv.org/abs/2107.01183v2
- Date: Mon, 5 Jul 2021 15:55:39 GMT
- Title: Ethics Sheets for AI Tasks
- Authors: Saif M. Mohammad
- Abstract summary: I will make a case for thinking about ethical considerations not just at the level of individual models and datasets, but also at the level of AI tasks.
I will present a new form of such an effort, Ethics Sheets for AI Tasks, dedicated to fleshing out the assumptions and ethical considerations hidden in how a task is commonly framed.
- Score: 25.289525325790414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Several high-profile events, such as the use of biased recidivism systems and
mass testing of emotion recognition systems on vulnerable sub-populations, have
highlighted how technology will often lead to more adverse outcomes for those
that are already marginalized. In this paper, I will make a case for thinking
about ethical considerations not just at the level of individual models and
datasets, but also at the level of AI tasks. I will present a new form of such
an effort, Ethics Sheets for AI Tasks, dedicated to fleshing out the
assumptions and ethical considerations hidden in how a task is commonly framed
and in the choices we make regarding the data, method, and evaluation. Finally,
I will provide an example ethics sheet for automatic emotion recognition.
Together with Data Sheets for datasets and Model Cards for AI systems, Ethics
Sheets aid in the development and deployment of responsible AI systems.
Related papers
- Predictable Artificial Intelligence [77.1127726638209]
This paper introduces the ideas and challenges of Predictable AI.
It explores the ways in which we can anticipate key validity indicators of present and future AI ecosystems.
We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems.
arXiv Detail & Related papers (2023-10-09T21:36:21Z) - EALM: Introducing Multidimensional Ethical Alignment in Conversational
Information Retrieval [43.72331337131317]
We introduce a workflow that integrates ethical alignment with an initial ethical judgment stage for efficient data screening.
We present the QA-ETHICS dataset adapted from the ETHICS benchmark, which serves as an evaluation tool by unifying scenarios and label meanings.
In addition, we suggest a new approach that achieves top performance in both binary and multi-label ethical judgment tasks.
arXiv Detail & Related papers (2023-10-02T08:22:34Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - Why we need biased AI -- How including cognitive and ethical machine
biases can enhance AI systems [0.0]
We argue for the structurewise implementation of human cognitive biases in learning algorithms.
In order to achieve ethical machine behavior, filter mechanisms have to be applied.
This paper is the first tentative step to explicitly pursue the idea of a re-evaluation of the ethical significance of machine biases.
arXiv Detail & Related papers (2022-03-18T12:39:35Z) - A Deployment Model to Extend Ethically Aligned AI Implementation Method
ECCOLA [5.28595286827031]
This study aims to extend ECCOLA with a deployment model to drive the adoption of ECCOLA.
The model includes simple metrics to facilitate the communication of ethical gaps or outcomes of ethical AI development.
arXiv Detail & Related papers (2021-10-12T12:22:34Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Implementing AI Ethics in Practice: An Empirical Evaluation of the
RESOLVEDD Strategy [6.7298812735467095]
We empirically evaluate an existing method from the field of business ethics, the RESOLVEDD strategy, in the context of ethical system development.
One of our key findings is that, even though the use of the ethical method was forced upon the participants, its utilization nonetheless facilitated of ethical consideration in the projects.
arXiv Detail & Related papers (2020-04-21T17:58:53Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
We train automatic recruitment algorithms using a set of multimodal synthetic profiles consciously scored with gender and racial biases.
Our methodology and results show how to generate fairer AI-based tools in general, and in particular fairer automated recruitment systems.
arXiv Detail & Related papers (2020-04-15T15:58:05Z) - Trustworthy AI in the Age of Pervasive Computing and Big Data [22.92621391190282]
We formalise the requirements of trustworthy AI systems through an ethics perspective.
After discussing the state of research and the remaining challenges, we show how a concrete use-case in smart cities can benefit from these methods.
arXiv Detail & Related papers (2020-01-30T08:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.