CHISEL: Compression-Aware High-Accuracy Embedded Indoor Localization
with Deep Learning
- URL: http://arxiv.org/abs/2107.01192v1
- Date: Fri, 2 Jul 2021 17:00:01 GMT
- Title: CHISEL: Compression-Aware High-Accuracy Embedded Indoor Localization
with Deep Learning
- Authors: Liping Wang, Saideep Tiku, Sudeep Pasricha
- Abstract summary: WiFi fingerprinting-based indoor localization is one of the most promising ways to meet this demand.
We propose a compression-aware and high-accuracy deep learning framework called CHISEL that outperforms the best-known works in the area.
- Score: 4.657486836910778
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: GPS technology has revolutionized the way we localize and navigate outdoors.
However, the poor reception of GPS signals in buildings makes it unsuitable for
indoor localization. WiFi fingerprinting-based indoor localization is one of
the most promising ways to meet this demand. Unfortunately, most work in the
domain fails to resolve challenges associated with deployability on
resource-limited embedded devices. In this work, we propose a compression-aware
and high-accuracy deep learning framework called CHISEL that outperforms the
best-known works in the area while maintaining localization robustness on
embedded devices.
Related papers
- Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
This paper explores the domain of active localization, emphasizing the importance of viewpoint selection to enhance localization accuracy.
Our contributions involve using a data-driven approach with a simple architecture designed for real-time operation, a self-supervised data training method, and the capability to consistently integrate our map into a planning framework tailored for real-world robotics applications.
arXiv Detail & Related papers (2024-07-22T12:32:09Z) - SANGRIA: Stacked Autoencoder Neural Networks with Gradient Boosting for
Indoor Localization [3.3379026542599934]
We propose a novel fingerprintingbased framework for indoor localization called SANGRIA.
We demonstrate 42.96% lower average localization error across diverse indoor locales and heterogeneous devices.
arXiv Detail & Related papers (2024-03-03T00:01:29Z) - Neural 5G Indoor Localization with IMU Supervision [63.45775390000508]
Radio signals are well suited for user localization because they are ubiquitous, can operate in the dark and maintain privacy.
Many prior works learn mappings between channel state information (CSI) and position fully-supervised.
In this work, this requirement is relaxed by using pseudo-labels during deployment, which are calculated from an inertial measurement unit (IMU)
arXiv Detail & Related papers (2024-02-15T13:51:21Z) - Multi-Head Attention Neural Network for Smartphone Invariant Indoor
Localization [3.577310844634503]
Smartphones together with RSSI fingerprinting serve as an efficient approach for delivering a low-cost and high-accuracy indoor localization solution.
We propose a multi-head attention neural network-based indoor localization framework that is resilient to device heterogeneity.
An in-depth analysis of our proposed framework demonstrates up to 35% accuracy improvement compared to state-of-the-art indoor localization techniques.
arXiv Detail & Related papers (2022-05-17T03:08:09Z) - LocUNet: Fast Urban Positioning Using Radio Maps and Deep Learning [59.17191114000146]
LocUNet: A deep learning method for localization, based merely on Received Signal Strength (RSS) from Base Stations (BSs)
In the proposed method, the user to be localized reports the RSS from BSs to a Central Processing Unit ( CPU) which may be located in the cloud.
Using estimated pathloss radio maps of the BSs, LocUNet can localize users with state-of-the-art accuracy and enjoys high robustness to inaccuracies in the radio maps.
arXiv Detail & Related papers (2022-02-01T20:27:46Z) - Siamese Neural Encoders for Long-Term Indoor Localization with Mobile
Devices [5.063728016437489]
Fingerprinting-based indoor localization is an emerging application domain for enhanced positioning and tracking of people and assets within indoor locales.
We propose a Siamese neural encoder-based framework that offers up to 40% reduction in degradation of localization accuracy over time compared to the state-of-the-art in the area.
arXiv Detail & Related papers (2021-11-28T07:22:55Z) - The Tale of Two Localization Technologies: Enabling Accurate
Low-Overhead WiFi-based Localization for Low-end Phones [5.198840934055703]
WiFi fingerprinting is one of the mainstream technologies for indoor localization.
We present HybridLoc: an accurate low-overhead indoor localization system.
HybridLoc builds on is to leverage the sensors of high-end phones to enable localization of lower-end phones.
arXiv Detail & Related papers (2021-06-25T14:31:26Z) - Markov Localisation using Heatmap Regression and Deep Convolutional
Odometry [59.33322623437816]
We present a novel CNN-based localisation approach that can leverage modern deep learning hardware.
We create a hybrid CNN that can perform image-based localisation and odometry-based likelihood propagation within a single neural network.
arXiv Detail & Related papers (2021-06-01T10:28:49Z) - EdgeLoc: An Edge-IoT Framework for Robust Indoor Localization Using
Capsule Networks [3.659977669398194]
We propose EdgeLoc, an edge-IoT framework for efficient and robust indoor localization using capsule networks.
We develop a deep learning model with the CapsNet to efficiently extract hierarchical information from WiFi fingerprint data.
We conduct a real-world field experiment with over 33,600 data points and an extensive synthetic experiment with the open dataset.
arXiv Detail & Related papers (2020-09-12T12:38:47Z) - Zero-Shot Multi-View Indoor Localization via Graph Location Networks [66.05980368549928]
indoor localization is a fundamental problem in location-based applications.
We propose a novel neural network based architecture Graph Location Networks (GLN) to perform infrastructure-free, multi-view image based indoor localization.
GLN makes location predictions based on robust location representations extracted from images through message-passing networks.
We introduce a novel zero-shot indoor localization setting and tackle it by extending the proposed GLN to a dedicated zero-shot version.
arXiv Detail & Related papers (2020-08-06T07:36:55Z) - Real-time Localization Using Radio Maps [59.17191114000146]
We present a simple yet effective method for localization based on pathloss.
In our approach, the user to be localized reports the received signal strength from a set of base stations with known locations.
arXiv Detail & Related papers (2020-06-09T16:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.