Pulmonary Vessel Segmentation based on Orthogonal Fused U-Net++ of Chest
CT Images
- URL: http://arxiv.org/abs/2107.01502v1
- Date: Sat, 3 Jul 2021 21:46:29 GMT
- Title: Pulmonary Vessel Segmentation based on Orthogonal Fused U-Net++ of Chest
CT Images
- Authors: Hejie Cui, Xinglong Liu, Ning Huang
- Abstract summary: We present an effective framework and refinement process of pulmonary vessel segmentation from chest computed tomographic (CT) images.
The key to our approach is a 2.5D segmentation network applied from three axes, which presents a robust and fully automated pulmonary vessel segmentation result.
Our method outperforms other network structures by a large margin and achieves by far the highest average DICE score of 0.9272 and precision of 0.9310.
- Score: 1.8692254863855962
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pulmonary vessel segmentation is important for clinical diagnosis of
pulmonary diseases, while is also challenging due to the complicated structure.
In this work, we present an effective framework and refinement process of
pulmonary vessel segmentation from chest computed tomographic (CT) images. The
key to our approach is a 2.5D segmentation network applied from three
orthogonal axes, which presents a robust and fully automated pulmonary vessel
segmentation result with lower network complexity and memory usage compared to
3D networks. The slice radius is introduced to convolve the adjacent
information of the center slice and the multi-planar fusion optimizes the
presentation of intra- and inter- slice features. Besides, the tree-like
structure of the pulmonary vessel is extracted in the post-processing process,
which is used for segmentation refining and pruning. In the evaluation
experiments, three fusion methods are tested and the most promising one is
compared with the state-of-the-art 2D and 3D structures on 300 cases of lung
images randomly selected from LIDC dataset. Our method outperforms other
network structures by a large margin and achieves by far the highest average
DICE score of 0.9272 and precision of 0.9310, as per our knowledge from the
pulmonary vessel segmentation models available in the literature.
Related papers
- Robust deep labeling of radiological emphysema subtypes using squeeze
and excitation convolutional neural networks: The MESA Lung and SPIROMICS
Studies [34.200556207264974]
Pulmonary emphysema is the progressive, irreversible loss of lung tissue.
Recent work has led to the unsupervised learning of ten spatially-informed lung texture patterns (ss) on lung CT.
We present a robust 3-D squeeze-and-excitation model for supervised classification of ss CNNs and CTES on lung CT.
arXiv Detail & Related papers (2024-03-01T03:45:56Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - MESAHA-Net: Multi-Encoders based Self-Adaptive Hard Attention Network
with Maximum Intensity Projections for Lung Nodule Segmentation in CT Scan [6.266053305874546]
We propose an efficient end-to-end framework, the multi-encoder-based self-adaptive hard attention network (MESAHA-Net) for precise lung nodule segmentation in CT scans.
MESAHA-Net iteratively performs slice-by-slice 2D segmentation of lung nodules, focusing on the nodule region in each slice to generate 3D segmentation of lung nodules.
The proposed framework has been evaluated on the LIDC-IDRI dataset, the largest publicly available dataset for lung nodule segmentation.
arXiv Detail & Related papers (2023-04-04T07:05:15Z) - CT-LungNet: A Deep Learning Framework for Precise Lung Tissue
Segmentation in 3D Thoracic CT Scans [1.1014741301167645]
This paper presents a fully automatic method that identifies the lungs in 3D pulmonary CT images using deep networks and transfer learning.
Our method was quantitatively assessed using one public dataset, LUNA16, for training and testing and two public datasets, namely, VESSEL12 and CRPF, only for testing.
arXiv Detail & Related papers (2022-12-28T17:37:08Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - CT Image Segmentation for Inflamed and Fibrotic Lungs Using a
Multi-Resolution Convolutional Neural Network [6.177921466996229]
The purpose of this study was to develop a fully-automated segmentation algorithm, robust to various density enhancing lung abnormalities.
A polymorphic training approach is proposed, in which both specifically labeled left and right lungs of humans with COPD, and nonspecifically labeled lungs of animals with acute lung injury, were incorporated into training a single neural network.
The resulting network is intended for predicting left and right lung regions in humans with or without diffuse opacification and consolidation.
arXiv Detail & Related papers (2020-10-16T18:25:59Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.