Domain Adaptation for Sentiment Analysis Using Increased Intraclass
Separation
- URL: http://arxiv.org/abs/2107.01598v1
- Date: Sun, 4 Jul 2021 11:39:12 GMT
- Title: Domain Adaptation for Sentiment Analysis Using Increased Intraclass
Separation
- Authors: Mohammad Rostami, Aram Galstyan
- Abstract summary: Cross-domain sentiment analysis methods have received significant attention.
We introduce a new domain adaptation method which induces large margins between different classes in an embedding space.
This embedding space is trained to be domain-agnostic by matching the data distributions across the domains.
- Score: 31.410122245232373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sentiment analysis is a costly yet necessary task for enterprises to study
the opinions of their customers to improve their products and to determine
optimal marketing strategies. Due to the existence of a wide range of domains
across different products and services, cross-domain sentiment analysis methods
have received significant attention. These methods mitigate the domain gap
between different applications by training cross-domain generalizable
classifiers which help to relax the need for data annotation for each domain.
Most existing methods focus on learning domain-agnostic representations that
are invariant with respect to both the source and the target domains. As a
result, a classifier that is trained using the source domain annotated data
would generalize well in a related target domain. We introduce a new domain
adaptation method which induces large margins between different classes in an
embedding space. This embedding space is trained to be domain-agnostic by
matching the data distributions across the domains. Large intraclass margins in
the source domain help to reduce the effect of "domain shift" on the classifier
performance in the target domain. Theoretical and empirical analysis are
provided to demonstrate that the proposed method is effective.
Related papers
- DAOT: Domain-Agnostically Aligned Optimal Transport for Domain-Adaptive
Crowd Counting [35.83485358725357]
Domain adaptation is commonly employed in crowd counting to bridge the domain gaps between different datasets.
Existing domain adaptation methods tend to focus on inter-dataset differences while overlooking the intra-differences within the same dataset.
We propose a Domain-agnostically Aligned Optimal Transport (DAOT) strategy that aligns domain-agnostic factors between domains.
arXiv Detail & Related papers (2023-08-10T02:59:40Z) - Meta-causal Learning for Single Domain Generalization [102.53303707563612]
Single domain generalization aims to learn a model from a single training domain (source domain) and apply it to multiple unseen test domains (target domains)
Existing methods focus on expanding the distribution of the training domain to cover the target domains, but without estimating the domain shift between the source and target domains.
We propose a new learning paradigm, namely simulate-analyze-reduce, which first simulates the domain shift by building an auxiliary domain as the target domain, then learns to analyze the causes of domain shift, and finally learns to reduce the domain shift for model adaptation.
arXiv Detail & Related papers (2023-04-07T15:46:38Z) - Domain Generalization via Selective Consistency Regularization for Time
Series Classification [16.338176636365752]
Domain generalization methods aim to learn models robust to domain shift with data from a limited number of source domains.
We propose a novel representation learning methodology that selectively enforces prediction consistency between source domains.
arXiv Detail & Related papers (2022-06-16T01:57:35Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
Partial domain adaptation (PDA) deals with a realistic and challenging problem when the source domain label space substitutes the target domain.
We propose an Adaptively-Accumulated Knowledge Transfer framework (A$2$KT) to align the relevant categories across two domains.
arXiv Detail & Related papers (2020-08-27T00:53:43Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
Partial domain adaptation aims to adapt knowledge from a larger and more diverse source domain to a smaller target domain with less number of classes.
Recent practice on domain adaptation manages to extract effective features by incorporating the pseudo labels for the target domain.
It is essential to align target data with only a small set of source data.
arXiv Detail & Related papers (2020-08-26T03:18:53Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
We propose a novel semantic for domain adaptation, where we have much fewer annotated data in the target domain compared to the source domain.
Our semantic benefits from a two-stage coarse-to-fine framework, thus can provide different and accurate treatments for the two stages.
Experiments on a benchmark dataset show that our method consistently outperforms several popular domain adaptation strategies.
arXiv Detail & Related papers (2020-06-23T14:47:41Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
Domain Adaptation (DA) targets at adapting a model trained over the well-labeled source domain to the unlabeled target domain lying in different distributions.
We develop a novel Generative Few-shot Cross-domain Adaptation (GFCA) algorithm for fair cross-domain classification.
arXiv Detail & Related papers (2020-03-04T23:25:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.