Thermally induced entanglement of atomic oscillators
- URL: http://arxiv.org/abs/2107.01939v2
- Date: Thu, 3 Mar 2022 13:28:53 GMT
- Title: Thermally induced entanglement of atomic oscillators
- Authors: Pradip Laha, Luk\'a\v{s} Slodi\v{c}ka, Darren W. Moore, Radim Filip
- Abstract summary: Laser cooled ions trapped in a linear Paul trap are long-standing ideal candidates for realizing quantum simulation.
A pair of ions interacting in such traps exchange vibrational quanta through the Coulomb interaction.
Driven by thermal energy, the nonlinear interaction autonomously and unconditionally generates entanglement between the mechanical modes of the ions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Laser cooled ions trapped in a linear Paul trap are long-standing ideal
candidates for realizing quantum simulation, especially of many-body systems.
The properties that contribute to this also provide the opportunity to
demonstrate unexpected quantum phenomena in few-body systems. A pair of ions
interacting in such traps exchange vibrational quanta through the Coulomb
interaction. This linear interaction can be anharmonically modulated by an
elementary coupling to the internal two-level structure of one of the ions.
Driven by thermal energy in the passively coupled oscillators, which are
themselves coupled to the internal ground states of the ions, the nonlinear
interaction autonomously and unconditionally generates entanglement between the
mechanical modes of the ions. We examine this counter-intuitive thermally
induced entanglement for several experimentally feasible model systems, and
propose parameter regimes where state of the art trapped ion systems can
produce such phenomena. In addition, we demonstrate a multiqubit enhancement of
such thermally induced entanglement.
Related papers
- Spectral features of polaronic excitations in a superconducting analog
simulator [0.0]
We investigate spectral properties of polaronic excitations within the framework of an analog quantum simulator.
The system emulates a lattice model that describes a nonlocal coupling of an itinerant spinless-fermion excitation to dispersionless (Einstein-type) phonons.
We show that -- based on the numerically evaluated spectral function and its well-known relation with the survival probability of the initial, bare-excitation Bloch state (the Loschmidt echo) -- one can make predictions about the system dynamics following an excitation-phonon interaction.
arXiv Detail & Related papers (2022-12-30T18:19:59Z) - Giant rectification in strongly-interacting driven tilted systems [0.0]
Correlated quantum systems feature a wide range of nontrivial effects emerging from interactions between their constituting particles.
In nonequilibrium scenarios, these manifest in phenomena such as many-body insulating states and anomalous scaling laws of currents of conserved quantities.
We propose a giant rectification scheme based on the asymmetric interplay between strong particle interactions and a tilted potential.
arXiv Detail & Related papers (2022-09-23T16:55:09Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum transient heat transport in the hyper-parametric oscillator [0.0]
We explore nonequilibrium quantum heat transport in nonlinear bosonic systems in the presence of a non-Kerr-type interaction.
Our findings may help in the manipulation of quantum states using the system's interactions to induce cooling.
arXiv Detail & Related papers (2020-11-05T05:05:36Z) - Quantum simulation of extended polaron models using compound atom-ion
systems [0.0]
We consider the prospects for quantum simulation of condensed matter models exhibiting strong electron-phonon coupling.
We derive the effective Hamiltonian describing the general system and discuss the arising energy scales.
Although for a typical experimentally realistic system the coupling to phonons turns out to be small, we provide the means to enhance its role.
arXiv Detail & Related papers (2020-05-18T12:18:59Z) - Entanglement-spectrum characterization of ground-state nonanalyticities
in coupled excitation-phonon models [0.0]
Small-polaron transitions are analyzed through the prism of the entanglement spectrum of the excitation-phonon system.
The behavior of the entanglement entropy in the vicinity of the critical excitation-phonon coupling strength chiefly originates from one specific entanglement-spectrum eigenvalue.
arXiv Detail & Related papers (2020-01-30T08:41:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.