On Bi-gram Graph Attributes
- URL: http://arxiv.org/abs/2107.02128v1
- Date: Mon, 5 Jul 2021 16:36:19 GMT
- Title: On Bi-gram Graph Attributes
- Authors: Thomas Konstantinovsky, Matan Mizrachi
- Abstract summary: We propose a new approach to text semantic analysis using a "bi-gram graph" representation of a corpus.
The different attributes derived from graph theory are measured and analyzed as unique insights or against other corpus graphs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new approach to text semantic analysis and general corpus
analysis using, as termed in this article, a "bi-gram graph" representation of
a corpus. The different attributes derived from graph theory are measured and
analyzed as unique insights or against other corpus graphs. We observe a vast
domain of tools and algorithms that can be developed on top of the graph
representation; creating such a graph proves to be computationally cheap, and
much of the heavy lifting is achieved via basic graph calculations.
Furthermore, we showcase the different use-cases for the bi-gram graphs and how
scalable it proves to be when dealing with large datasets.
Related papers
- Parametric Graph Representations in the Era of Foundation Models: A Survey and Position [69.48708136448694]
Graphs have been widely used in the past decades of big data and AI to model comprehensive relational data.
Identifying meaningful graph laws can significantly enhance the effectiveness of various applications.
arXiv Detail & Related papers (2024-10-16T00:01:31Z) - Encoder Embedding for General Graph and Node Classification [4.178980693837599]
We prove that the encoder embedding matrices satisfies the law of large numbers and the central limit theorem on a per-observation basis.
Under certain condition, it achieves normality on a per-class basis, enabling optimal classification through discriminant analysis.
arXiv Detail & Related papers (2024-05-24T11:51:08Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
We propose a novel framework for defining a graph mean via embeddings in the space of smooth graph signal distributions.
By finding a mean in this embedding space, we can recover a mean graph that preserves structural information.
We establish the existence and uniqueness of the novel graph mean, and provide an iterative algorithm for computing it.
arXiv Detail & Related papers (2023-05-31T11:04:53Z) - SynGraphy: Succinct Summarisation of Large Networks via Small Synthetic
Representative Graphs [4.550112751061436]
We describe SynGraphy, a method for visually summarising the structure of large network datasets.
It works by drawing smaller graphs generated to have similar structural properties to the input graphs.
arXiv Detail & Related papers (2023-02-15T16:00:15Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
We propose a contrastive graph matching network (CGMN) for self-supervised graph similarity learning.
We employ two strategies, namely cross-view interaction and cross-graph interaction, for effective node representation learning.
We transform node representations into graph-level representations via pooling operations for graph similarity computation.
arXiv Detail & Related papers (2022-05-30T13:20:26Z) - Online Graph Dictionary Learning [10.394615068526505]
We propose a new online Graph Dictionary Learning approach, which uses the Gromov Wasserstein divergence for the data fitting term.
In our work, graphs are encoded through their nodes' pairwise relations and modeled as convex combination of graph atoms.
Our approach naturally extends to labeled graphs, and is completed by a novel upper bound that can be used as a fast approximation of Gromov Wasserstein in the embedding space.
arXiv Detail & Related papers (2021-02-12T14:39:28Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Deep Learning for Learning Graph Representations [58.649784596090385]
Mining graph data has become a popular research topic in computer science.
The huge amount of network data has posed great challenges for efficient analysis.
This motivates the advent of graph representation which maps the graph into a low-dimension vector space.
arXiv Detail & Related papers (2020-01-02T02:13:28Z) - Homology-Preserving Multi-Scale Graph Skeletonization Using Mapper on
Graphs [5.86893539706548]
We propose to apply the mapper construction -- a popular tool in topological data analysis -- to graph visualization.
We develop a variation of the mapper construction targeting weighted, undirected graphs, called mog, which generates homology-preserving skeletons of graphs.
We provide a software tool that enables interactive explorations of such skeletons and demonstrate the effectiveness of our method for synthetic and real-world data.
arXiv Detail & Related papers (2018-04-03T19:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.