Multivariate functional group sparse regression: functional predictor
selection
- URL: http://arxiv.org/abs/2107.02146v2
- Date: Thu, 8 Jul 2021 15:03:06 GMT
- Title: Multivariate functional group sparse regression: functional predictor
selection
- Authors: Ali Mahzarnia and Jun Song
- Abstract summary: We develop two methods for functional group-sparse regression under a generic Hilbert space of infinite dimension.
We show the convergence of algorithms and the consistency of the estimation and the selection.
The applications to the functional magnetic resonance imaging (fMRI) reveal the regions of the human brain related to ADHD and IQ.
- Score: 2.0063942015243423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose methods for functional predictor selection and the
estimation of smooth functional coefficients simultaneously in a
scalar-on-function regression problem under high-dimensional multivariate
functional data setting. In particular, we develop two methods for functional
group-sparse regression under a generic Hilbert space of infinite dimension. We
show the convergence of algorithms and the consistency of the estimation and
the selection (oracle property) under infinite-dimensional Hilbert spaces.
Simulation studies show the effectiveness of the methods in both the selection
and the estimation of functional coefficients. The applications to the
functional magnetic resonance imaging (fMRI) reveal the regions of the human
brain related to ADHD and IQ.
Related papers
- Approximation of RKHS Functionals by Neural Networks [30.42446856477086]
We study the approximation of functionals on kernel reproducing Hilbert spaces (RKHS's) using neural networks.
We derive explicit error bounds for those induced by inverse multiquadric, Gaussian, and Sobolev kernels.
We apply our findings to functional regression, proving that neural networks can accurately approximate the regression maps.
arXiv Detail & Related papers (2024-03-18T18:58:23Z) - Mapping-to-Parameter Nonlinear Functional Regression with Novel B-spline
Free Knot Placement Algorithm [12.491024918270824]
We propose a novel approach to nonlinear functional regression.
The model is based on the mapping of function data from an infinite-dimensional function space to a finite-dimensional parameter space.
The performance of our knot placement algorithms is shown to be robust in both single-function approximation and multiple-function approximation contexts.
arXiv Detail & Related papers (2024-01-26T16:35:48Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - Runtime Analysis of the (1+1) EA on Weighted Sums of Transformed Linear
Functions [13.264683014487376]
We study the class of objective functions that are weighted sums of two transformed linear functions.
Our results show that the (1+1) EA, with a mutation rate depending on the number of overlapping bits of the functions, obtains an optimal solution for these functions in expected time O(n log n)
arXiv Detail & Related papers (2022-08-11T07:05:15Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
We propose a novel model selection algorithm based on a penalized maximum likelihood estimator (PMLE) for functional hiddenstatistical models (f-HD)
The algorithm is based on iterative optimisation and uses an adaptive least absolute shrinkage and selector operator (GMSOLAS) penalty function, wherein the weights are obtained by the unpenalised f-HD maximum-likelihood estimators.
arXiv Detail & Related papers (2022-08-10T19:17:45Z) - Computationally Efficient PAC RL in POMDPs with Latent Determinism and
Conditional Embeddings [97.12538243736705]
We study reinforcement learning with function approximation for large-scale Partially Observable Decision Processes (POMDPs)
Our algorithm provably scales to large-scale POMDPs.
arXiv Detail & Related papers (2022-06-24T05:13:35Z) - Modern Non-Linear Function-on-Function Regression [8.231050911072755]
We introduce a new class of non-linear function-on-function regression models for functional data using neural networks.
We give two model fitting strategies, Functional Direct Neural Network (FDNN) and Functional Basis Neural Network (FBNN)
arXiv Detail & Related papers (2021-07-29T16:19:59Z) - Going Beyond Linear RL: Sample Efficient Neural Function Approximation [76.57464214864756]
We study function approximation with two-layer neural networks.
Our results significantly improve upon what can be attained with linear (or eluder dimension) methods.
arXiv Detail & Related papers (2021-07-14T03:03:56Z) - High-dimensional Functional Graphical Model Structure Learning via
Neighborhood Selection Approach [15.334392442475115]
We propose a neighborhood selection approach to estimate the structure of functional graphical models.
We thus circumvent the need for a well-defined precision operator that may not exist when the functions are infinite dimensional.
arXiv Detail & Related papers (2021-05-06T07:38:50Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
Our algorithm generates a sequence of finite-dimensional random subspaces of functional space spanned by a set of draws from the experimenter's Gaussian Process.
Standard Bayesian optimisation is applied on each subspace, and the best solution found used as a starting point (origin) for the next subspace.
We test our algorithm in simulated and real-world experiments, namely blind function matching, finding the optimal precipitation-strengthening function for an aluminium alloy, and learning rate schedule optimisation for deep networks.
arXiv Detail & Related papers (2020-09-08T06:54:11Z) - Invariant Feature Coding using Tensor Product Representation [75.62232699377877]
We prove that the group-invariant feature vector contains sufficient discriminative information when learning a linear classifier.
A novel feature model that explicitly consider group action is proposed for principal component analysis and k-means clustering.
arXiv Detail & Related papers (2019-06-05T07:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.