Deep Mesh Prior: Unsupervised Mesh Restoration using Graph Convolutional
Networks
- URL: http://arxiv.org/abs/2107.02909v1
- Date: Fri, 2 Jul 2021 07:21:10 GMT
- Title: Deep Mesh Prior: Unsupervised Mesh Restoration using Graph Convolutional
Networks
- Authors: Shota Hattori, Tatsuya Yatagawa, Yutaka Ohtake, Hiromasa Suzuki
- Abstract summary: We propose a graph convolutional network on meshes to learn self-similarity.
The network takes a single incomplete mesh as input data and directly outputs the reconstructed mesh.
We demonstrate that our unsupervised method performs equally well or even better than the state-of-the-art methods using large-scale datasets.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses mesh restoration problems, i.e., denoising and
completion, by learning self-similarity in an unsupervised manner. For this
purpose, the proposed method, which we refer to as Deep Mesh Prior, uses a
graph convolutional network on meshes to learn the self-similarity. The network
takes a single incomplete mesh as input data and directly outputs the
reconstructed mesh without being trained using large-scale datasets. Our method
does not use any intermediate representations such as an implicit field because
the whole process works on a mesh. We demonstrate that our unsupervised method
performs equally well or even better than the state-of-the-art methods using
large-scale datasets.
Related papers
- SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
We present a scheme to directly generate manifold, polygonal meshes of complex connectivity as the output of a neural network.
Our key innovation is to define a continuous latent connectivity space at each mesh, which implies the discrete mesh.
In applications, this approach not only yields high-quality outputs from generative models, but also enables directly learning challenging geometry processing tasks such as mesh repair.
arXiv Detail & Related papers (2024-09-30T17:59:03Z) - Learning Self-Prior for Mesh Inpainting Using Self-Supervised Graph Convolutional Networks [4.424836140281846]
We present a self-prior-based mesh inpainting framework that requires only an incomplete mesh as input.
Our method maintains the polygonal mesh format throughout the inpainting process.
We demonstrate that our method outperforms traditional dataset-independent approaches.
arXiv Detail & Related papers (2023-05-01T02:51:38Z) - NeuralMeshing: Differentiable Meshing of Implicit Neural Representations [63.18340058854517]
We propose a novel differentiable meshing algorithm for extracting surface meshes from neural implicit representations.
Our method produces meshes with regular tessellation patterns and fewer triangle faces compared to existing methods.
arXiv Detail & Related papers (2022-10-05T16:52:25Z) - Mesh Draping: Parametrization-Free Neural Mesh Transfer [92.55503085245304]
Mesh Draping is a neural method for transferring existing mesh structure from one shape to another.
We show that by leveraging gradually increasing frequencies to guide the neural optimization, we are able to achieve stable and high quality mesh transfer.
arXiv Detail & Related papers (2021-10-11T17:24:52Z) - Mixed-Privacy Forgetting in Deep Networks [114.3840147070712]
We show that the influence of a subset of the training samples can be removed from the weights of a network trained on large-scale image classification tasks.
Inspired by real-world applications of forgetting techniques, we introduce a novel notion of forgetting in mixed-privacy setting.
We show that our method allows forgetting without having to trade off the model accuracy.
arXiv Detail & Related papers (2020-12-24T19:34:56Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
We propose a primal-dual framework drawn from the graph-neural-network literature to triangle meshes.
Our method takes features for both edges and faces of a 3D mesh as input and dynamically aggregates them.
We provide theoretical insights of our approach using tools from the mesh-simplification literature.
arXiv Detail & Related papers (2020-10-23T14:49:02Z) - Neural Subdivision [58.97214948753937]
This paper introduces Neural Subdivision, a novel framework for data-driven coarseto-fine geometry modeling.
We optimize for the same set of network weights across all local mesh patches, thus providing an architecture that is not constrained to a specific input mesh, fixed genus, or category.
We demonstrate that even when trained on a single high-resolution mesh our method generates reasonable subdivisions for novel shapes.
arXiv Detail & Related papers (2020-05-04T20:03:21Z) - EPINE: Enhanced Proximity Information Network Embedding [2.257737378757467]
In this work, we devote to mining valuable information in adjacency matrices at a deeper level.
Under the same objective, many NE methods calculate high-order proximity by the powers of adjacency matrices.
We propose to redefine high-order proximity in a more intuitive manner.
arXiv Detail & Related papers (2020-03-04T15:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.