Robustifying Multi-hop QA through Pseudo-Evidentiality Training
- URL: http://arxiv.org/abs/2107.03242v1
- Date: Wed, 7 Jul 2021 14:15:14 GMT
- Title: Robustifying Multi-hop QA through Pseudo-Evidentiality Training
- Authors: Kyungjae Lee, Seung-won Hwang, Sang-eun Han and Dohyeon Lee
- Abstract summary: We study the bias problem of multi-hop question answering models, of answering correctly without correct reasoning.
We propose a new approach to learn evidentiality, deciding whether the answer prediction is supported by correct evidences.
- Score: 28.584236042324896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper studies the bias problem of multi-hop question answering models,
of answering correctly without correct reasoning. One way to robustify these
models is by supervising to not only answer right, but also with right
reasoning chains. An existing direction is to annotate reasoning chains to
train models, requiring expensive additional annotations. In contrast, we
propose a new approach to learn evidentiality, deciding whether the answer
prediction is supported by correct evidences, without such annotations.
Instead, we compare counterfactual changes in answer confidence with and
without evidence sentences, to generate "pseudo-evidentiality" annotations. We
validate our proposed model on an original set and challenge set in HotpotQA,
showing that our method is accurate and robust in multi-hop reasoning.
Related papers
- Chain-of-Probe: Examing the Necessity and Accuracy of CoT Step-by-Step [81.50681925980135]
We propose a method to probe changes in the mind during the model's reasoning.
By analyzing patterns in mind change, we examine the correctness of the model's reasoning.
Our validation reveals that many responses, although correct in their final answer, contain errors in their reasoning process.
arXiv Detail & Related papers (2024-06-23T15:50:22Z) - HOP, UNION, GENERATE: Explainable Multi-hop Reasoning without Rationale
Supervision [118.0818807474809]
This work proposes a principled, probabilistic approach for training explainable multi-hop QA systems without rationale supervision.
Our approach performs multi-hop reasoning by explicitly modeling rationales as sets, enabling the model to capture interactions between documents and sentences within a document.
arXiv Detail & Related papers (2023-05-23T16:53:49Z) - Understanding and Improving Zero-shot Multi-hop Reasoning in Generative
Question Answering [85.79940770146557]
We decompose multi-hop questions into multiple corresponding single-hop questions.
We find marked inconsistency in QA models' answers on these pairs of ostensibly identical question chains.
When trained only on single-hop questions, models generalize poorly to multi-hop questions.
arXiv Detail & Related papers (2022-10-09T11:48:07Z) - Measuring and Narrowing the Compositionality Gap in Language Models [116.5228850227024]
We measure how often models can correctly answer all sub-problems but not generate the overall solution.
We present a new method, self-ask, that further improves on chain of thought.
arXiv Detail & Related papers (2022-10-07T06:50:23Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
We introduce the methodology of Faithfulness-through-Counterfactuals.
It generates a counterfactual hypothesis based on the logical predicates expressed in the explanation.
It then evaluates if the model's prediction on the counterfactual is consistent with that expressed logic.
arXiv Detail & Related papers (2022-05-25T03:40:59Z) - Reasoning Chain Based Adversarial Attack for Multi-hop Question
Answering [0.0]
Previous adversarial attack works usually edit the whole question sentence.
We propose a multi-hop reasoning chain based adversarial attack method.
Results demonstrate significant performance reduction on both answer and supporting facts prediction.
arXiv Detail & Related papers (2021-12-17T18:03:14Z) - Distantly-Supervised Evidence Retrieval Enables Question Answering
without Evidence Annotation [19.551623461082617]
Open-domain question answering answers a question based on evidence retrieved from a large corpus.
This paper investigates whether models can learn to find evidence from a large corpus, with only distant supervision from answer labels for model training.
We introduce a novel approach (DistDR) that iteratively improves over a weak retriever by alternately finding evidence from the up-to-date model and encouraging the model to learn the most likely evidence.
arXiv Detail & Related papers (2021-10-10T20:01:27Z) - Generative Context Pair Selection for Multi-hop Question Answering [60.74354009152721]
We propose a generative context selection model for multi-hop question answering.
Our proposed generative passage selection model has a better performance (4.9% higher than baseline) on adversarial held-out set.
arXiv Detail & Related papers (2021-04-18T07:00:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.