Unsupervised Proxy Selection for Session-based Recommender Systems
- URL: http://arxiv.org/abs/2107.03564v1
- Date: Thu, 8 Jul 2021 02:03:06 GMT
- Title: Unsupervised Proxy Selection for Session-based Recommender Systems
- Authors: Junsu Cho, SeongKu Kang, Dongmin Hyun, Hwanjo Yu
- Abstract summary: Session-based Recommender Systems (SRSs) have been actively developed to recommend the next item of an anonymous short item sequence (i.e., session)
Unlike sequence-aware recommender systems where the whole interaction sequence of each user can be used to model both the short-term interest and the general interest of the user, the absence of user-dependent information in SRSs makes it difficult to directly derive the user's general interest from data.
Existing SRSs have focused on how to effectively model the information about short-term interest within the sessions, but they are insufficient to capture the general interest of
- Score: 15.930016839929047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Session-based Recommender Systems (SRSs) have been actively developed to
recommend the next item of an anonymous short item sequence (i.e., session).
Unlike sequence-aware recommender systems where the whole interaction sequence
of each user can be used to model both the short-term interest and the general
interest of the user, the absence of user-dependent information in SRSs makes
it difficult to directly derive the user's general interest from data.
Therefore, existing SRSs have focused on how to effectively model the
information about short-term interest within the sessions, but they are
insufficient to capture the general interest of users. To this end, we propose
a novel framework to overcome the limitation of SRSs, named ProxySR, which
imitates the missing information in SRSs (i.e., general interest of users) by
modeling proxies of sessions. ProxySR selects a proxy for the input session in
an unsupervised manner, and combines it with the encoded short-term interest of
the session. As a proxy is jointly learned with the short-term interest and
selected by multiple sessions, a proxy learns to play the role of the general
interest of a user and ProxySR learns how to select a suitable proxy for an
input session. Moreover, we propose another real-world situation of SRSs where
a few users are logged-in and leave their identifiers in sessions, and a
revision of ProxySR for the situation. Our experiments on real-world datasets
show that ProxySR considerably outperforms the state-of-the-art competitors,
and the proxies successfully imitate the general interest of the users without
any user-dependent information.
Related papers
- Search-Based Interaction For Conversation Recommendation via Generative Reward Model Based Simulated User [117.82681846559909]
Conversational recommendation systems (CRSs) use multi-turn interaction to capture user preferences and provide personalized recommendations.
We propose a generative reward model based simulated user, named GRSU, for automatic interaction with CRSs.
arXiv Detail & Related papers (2025-04-29T06:37:30Z) - User Consented Federated Recommender System Against Personalized
Attribute Inference Attack [55.24441467292359]
We propose a user-consented federated recommendation system (UC-FedRec) to flexibly satisfy the different privacy needs of users.
UC-FedRec allows users to self-define their privacy preferences to meet various demands and makes recommendations with user consent.
arXiv Detail & Related papers (2023-12-23T09:44:57Z) - When Search Meets Recommendation: Learning Disentangled Search
Representation for Recommendation [56.98380787425388]
We propose a search-Enhanced framework for the Sequential Recommendation (SESRec)
SESRec disentangling similar and dissimilar representations within S&R behaviors.
Experiments on both industrial and public datasets demonstrate that SESRec consistently outperforms state-of-the-art models.
arXiv Detail & Related papers (2023-05-18T09:04:50Z) - STAR: A Session-Based Time-Aware Recommender System [8.122270502556372]
Session-Based Recommenders (SBRs) aim to predict users' next preferences regard to their previous interactions in sessions while there is no historical information about them.
In this paper, we examine the potential of session temporal information in enhancing the performance of SBRs.
We propose the STAR framework, which utilizes the time intervals between events within sessions to construct more informative representations for items and sessions.
arXiv Detail & Related papers (2022-11-11T18:25:48Z) - Intelligent Request Strategy Design in Recommender System [76.90734681369156]
We envision a new learning task of edge intelligence named Intelligent Request Strategy Design (IRSD)
IRSD aims to improve the effectiveness of waterfall RSs by determining the appropriate occasions of request insertion based on users' real-time intention.
We propose a new paradigm of adaptive request insertion strategy named Uplift-based On-edge Smart Request Framework (AdaRequest)
arXiv Detail & Related papers (2022-06-23T16:51:38Z) - Heterogeneous Graph Neural Network for Personalized Session-Based
Recommendation with User-Session Constraints [0.0]
Session-based recommendation attempts to recommend items by interpreting sessions that consist of sequences of items.
In this paper, we consider various relationships in graph created by sessions through Heterogeneous attention network.
It seeks to increase performance through additional optimization in the training process.
arXiv Detail & Related papers (2022-05-23T14:35:26Z) - Sequential/Session-based Recommendations: Challenges, Approaches,
Applications and Opportunities [20.968084179750143]
sequential recommender systems (SRSs) and session-based recommender systems (SBRSs) have emerged as a new paradigm of RSs.
There are many inconsistencies in this area caused by the diverse descriptions, settings, assumptions and application domains.
This work aims to fill in these gaps so as to facilitate further research in this exciting and vibrant area.
arXiv Detail & Related papers (2022-05-22T06:17:36Z) - G$^3$SR: Global Graph Guided Session-based Recommendation [116.38098186755029]
Session-based recommendation tries to make use of anonymous session data to deliver high-quality recommendation.
G$3$SR (Global Graph Guided Session-based Recommendation) decomposes the session-based recommendation workflow into two steps.
Experiments on two real-world benchmark datasets show remarkable and consistent improvements of the G$3$SR method over the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-12T15:44:03Z) - Sequential Search with Off-Policy Reinforcement Learning [48.88165680363482]
We propose a highly scalable hybrid learning model that consists of an RNN learning framework and an attention model.
As a novel optimization step, we fit multiple short user sequences in a single RNN pass within a training batch, by solving a greedy knapsack problem on the fly.
We also explore the use of off-policy reinforcement learning in multi-session personalized search ranking.
arXiv Detail & Related papers (2022-02-01T06:52:40Z) - SR-HetGNN:Session-based Recommendation with Heterogeneous Graph Neural
Network [20.82060191403763]
Session-Based Recommendation System aims to predict the user's next click based on their previous session sequence.
We propose SR-HetGNN, a novel session recommendation method that uses a heterogeneous graph neural network (HetGNN) to learn session embeddings.
SR-HetGNN is shown to be superior to the existing state-of-the-art session-based recommendation methods through extensive experiments over two real large datasets Diginetica and Tmall.
arXiv Detail & Related papers (2021-08-12T10:12:48Z) - Reciprocal Recommender Systems: Analysis of State-of-Art Literature,
Challenges and Opportunities towards Social Recommendation [14.944946561487535]
Reciprocal Recommender System (RRS) is a data-driven personalized decision support tool.
RRS processes user-related data, filtering and recommending items based on the users preferences, needs and/or behaviour.
This paper summarizes the state-of-the-art RRS research to date, focusing on the algorithms, fusion processes and fundamental characteristics of RRS.
arXiv Detail & Related papers (2020-07-17T09:48:46Z) - Sequential Recommender Systems: Challenges, Progress and Prospects [50.12218578518894]
sequential recommender systems (SRSs) try to understand and model the sequential user behaviors, the interactions between users and items, and the evolution of users preferences and item popularity over time.
We first present the characteristics of SRSs, then summarize and categorize the key challenges in this research area, followed by the corresponding research progress consisting of the most recent and representative developments on this topic.
arXiv Detail & Related papers (2019-12-28T05:12:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.