Feature Pyramid Network for Multi-task Affective Analysis
- URL: http://arxiv.org/abs/2107.03670v2
- Date: Fri, 9 Jul 2021 11:14:03 GMT
- Title: Feature Pyramid Network for Multi-task Affective Analysis
- Authors: Ruian He, Zhen Xing, Weimin Tan, Bo Yan
- Abstract summary: We propose a novel model named feature pyramid networks for multi-task affect analysis.
The hierarchical features are extracted to predict three labels and we apply teacher-student training strategy to learn from pretrained single-task models.
- Score: 15.645791213312734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Affective Analysis is not a single task, and the valence-arousal value,
expression class and action unit can be predicted at the same time. Previous
researches failed to take them as a whole task or ignore the entanglement and
hierarchical relation of this three facial attributes. We propose a novel model
named feature pyramid networks for multi-task affect analysis. The hierarchical
features are extracted to predict three labels and we apply teacher-student
training strategy to learn from pretrained single-task models. Extensive
experiment results demonstrate the proposed model outperform other models.This
is a submission to The 2nd Workshop and Competition on Affective Behavior
Analysis in-the-wild (ABAW). The code and model are available for research
purposes at https://github.com/ryanhe312/ABAW2-FPNMAA.
Related papers
- Bidirectional Awareness Induction in Autoregressive Seq2Seq Models [47.82947878753809]
Bidirectional Awareness Induction (BAI) is a training method that leverages a subset of elements in the network, the Pivots, to perform bidirectional learning without breaking the autoregressive constraints.
In particular, we observed an increase of up to 2.4 CIDEr in Image-Captioning, 4.96 BLEU in Neural Machine Translation, and 1.16 ROUGE in Text Summarization compared to the respective baselines.
arXiv Detail & Related papers (2024-08-25T23:46:35Z) - Concrete Subspace Learning based Interference Elimination for Multi-task
Model Fusion [86.6191592951269]
Merging models fine-tuned from common extensively pretrained large model but specialized for different tasks has been demonstrated as a cheap and scalable strategy to construct a multitask model that performs well across diverse tasks.
We propose the CONtinuous relaxation dis (Concrete) subspace learning method to identify a common lowdimensional subspace and utilize its shared information track interference problem without sacrificing performance.
arXiv Detail & Related papers (2023-12-11T07:24:54Z) - Body Segmentation Using Multi-task Learning [1.0832844764942349]
We present a novel multi-task model for human segmentation/parsing that involves three tasks.
The main idea behind the proposed--Pose--DensePose model (or SPD for short) is to learn a better segmentation model by sharing knowledge across different, yet related tasks.
The performance of the model is analysed through rigorous experiments on the LIP and ATR datasets and in comparison to a recent (state-of-the-art) multi-task body-segmentation model.
arXiv Detail & Related papers (2022-12-13T13:06:21Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
Retrieval-based machine learning methods have enjoyed success on a wide range of problems.
Despite growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored.
We present a formal treatment of retrieval-based models to characterize their generalization ability.
arXiv Detail & Related papers (2022-10-06T00:33:01Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
We focus on aspect-based sentiment analysis, which involves extracting aspect term, category, and predicting their corresponding polarities.
We propose to reformulate the extraction and prediction tasks into the sequence generation task, using a generative language model with unidirectional attention.
Our approach outperforms the previous state-of-the-art (based on BERT) on average performance by a large margins in few-shot and full-shot settings.
arXiv Detail & Related papers (2022-04-11T18:31:53Z) - The Effect of Diversity in Meta-Learning [79.56118674435844]
Few-shot learning aims to learn representations that can tackle novel tasks given a small number of examples.
Recent studies show that task distribution plays a vital role in the model's performance.
We study different task distributions on a myriad of models and datasets to evaluate the effect of task diversity on meta-learning algorithms.
arXiv Detail & Related papers (2022-01-27T19:39:07Z) - A Multi-task Mean Teacher for Semi-supervised Facial Affective Behavior
Analysis [15.95010869939508]
Existing affective behavior analysis method such as TSAV suffer from challenge of incomplete labeled datasets.
This paper presents a multi-task mean teacher model for semi-supervised Affective Behavior Analysis to learn from missing labels.
Experimental results on validation datasets show that our method achieves better performance than TSAV model.
arXiv Detail & Related papers (2021-07-09T05:48:22Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z) - Reducing Overlearning through Disentangled Representations by
Suppressing Unknown Tasks [8.517620051440005]
Existing deep learning approaches for learning visual features tend to overlearn and extract more information than what is required for the task at hand.
From a privacy preservation perspective, the input visual information is not protected from the model.
We propose a model-agnostic solution for reducing model overlearning by suppressing all the unknown tasks.
arXiv Detail & Related papers (2020-05-20T17:31:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.