Robust Counterfactual Explanations on Graph Neural Networks
- URL: http://arxiv.org/abs/2107.04086v1
- Date: Thu, 8 Jul 2021 19:50:00 GMT
- Title: Robust Counterfactual Explanations on Graph Neural Networks
- Authors: Mohit Bajaj, Lingyang Chu, Zi Yu Xue, Jian Pei, Lanjun Wang, Peter
Cho-Ho Lam, Yong Zhang
- Abstract summary: Massive deployment of Graph Neural Networks (GNNs) in high-stake applications generates a strong demand for explanations that are robust to noise.
Most existing methods generate explanations by identifying a subgraph of an input graph that has a strong correlation with the prediction.
We propose a novel method to generate robust counterfactual explanations on GNNs by explicitly modelling the common decision logic of GNNs on similar input graphs.
- Score: 42.91881080506145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Massive deployment of Graph Neural Networks (GNNs) in high-stake applications
generates a strong demand for explanations that are robust to noise and align
well with human intuition. Most existing methods generate explanations by
identifying a subgraph of an input graph that has a strong correlation with the
prediction. These explanations are not robust to noise because independently
optimizing the correlation for a single input can easily overfit noise.
Moreover, they do not align well with human intuition because removing an
identified subgraph from an input graph does not necessarily change the
prediction result. In this paper, we propose a novel method to generate robust
counterfactual explanations on GNNs by explicitly modelling the common decision
logic of GNNs on similar input graphs. Our explanations are naturally robust to
noise because they are produced from the common decision boundaries of a GNN
that govern the predictions of many similar input graphs. The explanations also
align well with human intuition because removing the set of edges identified by
an explanation from the input graph changes the prediction significantly.
Exhaustive experiments on many public datasets demonstrate the superior
performance of our method.
Related papers
- Empowering Counterfactual Reasoning over Graph Neural Networks through
Inductivity [7.094238868711952]
Graph neural networks (GNNs) have various practical applications, such as drug discovery, recommendation engines, and chip design.
Counterfactual reasoning is used to make minimal changes to the input graph of a GNN in order to alter its prediction.
arXiv Detail & Related papers (2023-06-07T23:40:18Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph
Matching [68.35685422301613]
We propose a novel non-parametric subgraph matching framework, dubbed MatchExplainer, to explore explanatory subgraphs.
It couples the target graph with other counterpart instances and identifies the most crucial joint substructure by minimizing the node corresponding-based distance.
Experiments on synthetic and real-world datasets show the effectiveness of our MatchExplainer by outperforming all state-of-the-art parametric baselines with significant margins.
arXiv Detail & Related papers (2023-01-07T05:14:45Z) - On Consistency in Graph Neural Network Interpretation [34.25952902469481]
Instance-level GNN explanation aims to discover critical input elements, like nodes or edges, that the target GNN relies upon for making predictions.
Various algorithms are proposed, but most of them formalize this task by searching the minimal subgraph.
We propose a simple yet effective countermeasure by aligning embeddings.
arXiv Detail & Related papers (2022-05-27T02:58:07Z) - Reinforced Causal Explainer for Graph Neural Networks [112.57265240212001]
Explainability is crucial for probing graph neural networks (GNNs)
We propose a reinforcement learning agent, Reinforced Causal Explainer (RC-Explainer)
RC-Explainer generates faithful and concise explanations, and has a better power to unseen graphs.
arXiv Detail & Related papers (2022-04-23T09:13:25Z) - Zorro: Valid, Sparse, and Stable Explanations in Graph Neural Networks [6.004582130591279]
We find that the previous explanation generation approaches that maximize the mutual information between the label distribution produced by the GNN model and the explanation to be restrictive.
Specifically, existing approaches do not enforce explanations to be predictive, sparse, or robust to input perturbations.
We propose a novel approach Zorro based on the principles from rate-distortion theory that uses a simple procedure to optimize for fidelity.
arXiv Detail & Related papers (2021-05-18T15:53:09Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
We propose PGExplainer, a parameterized explainer for Graph Neural Networks (GNNs)
Compared to the existing work, PGExplainer has better generalization ability and can be utilized in an inductive setting easily.
Experiments on both synthetic and real-life datasets show highly competitive performance with up to 24.7% relative improvement in AUC on explaining graph classification.
arXiv Detail & Related papers (2020-11-09T17:15:03Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.