Positive-Unlabeled Classification under Class-Prior Shift: A
Prior-invariant Approach Based on Density Ratio Estimation
- URL: http://arxiv.org/abs/2107.05045v1
- Date: Sun, 11 Jul 2021 13:36:53 GMT
- Title: Positive-Unlabeled Classification under Class-Prior Shift: A
Prior-invariant Approach Based on Density Ratio Estimation
- Authors: Shota Nakajima, Masashi Sugiyama
- Abstract summary: We propose a novel PU classification method based on density ratio estimation.
A notable advantage of our proposed method is that it does not require the class-priors in the training phase.
- Score: 85.75352990739154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning from positive and unlabeled (PU) data is an important problem in
various applications. Most of the recent approaches for PU classification
assume that the class-prior (the ratio of positive samples) in the training
unlabeled dataset is identical to that of the test data, which does not hold in
many practical cases. In addition, we usually do not know the class-priors of
the training and test data, thus we have no clue on how to train a classifier
without them. To address these problems, we propose a novel PU classification
method based on density ratio estimation. A notable advantage of our proposed
method is that it does not require the class-priors in the training phase;
class-prior shift is incorporated only in the test phase. We theoretically
justify our proposed method and experimentally demonstrate its effectiveness.
Related papers
- Meta-learning for Positive-unlabeled Classification [40.11462237689747]
The proposed method minimizes the test classification risk after the model is adapted to PU data.
The method embeds each instance into a task-specific space using neural networks.
We empirically show that the proposed method outperforms existing methods with one synthetic and three real-world datasets.
arXiv Detail & Related papers (2024-06-06T01:50:01Z) - Contrastive Approach to Prior Free Positive Unlabeled Learning [15.269090018352875]
We propose a novel PU learning framework, that starts by learning a feature space through pretext-invariant representation learning.
Our proposed approach handily outperforms state-of-the-art PU learning methods across several standard PU benchmark datasets.
arXiv Detail & Related papers (2024-02-08T20:20:54Z) - Robust Positive-Unlabeled Learning via Noise Negative Sample
Self-correction [48.929877651182885]
Learning from positive and unlabeled data is known as positive-unlabeled (PU) learning in literature.
We propose a new robust PU learning method with a training strategy motivated by the nature of human learning.
arXiv Detail & Related papers (2023-08-01T04:34:52Z) - Adaptive Negative Evidential Deep Learning for Open-set Semi-supervised Learning [69.81438976273866]
Open-set semi-supervised learning (Open-set SSL) considers a more practical scenario, where unlabeled data and test data contain new categories (outliers) not observed in labeled data (inliers)
We introduce evidential deep learning (EDL) as an outlier detector to quantify different types of uncertainty, and design different uncertainty metrics for self-training and inference.
We propose a novel adaptive negative optimization strategy, making EDL more tailored to the unlabeled dataset containing both inliers and outliers.
arXiv Detail & Related papers (2023-03-21T09:07:15Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples.
We investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem.
We propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers.
arXiv Detail & Related papers (2022-11-21T18:47:11Z) - Learning Acceptance Regions for Many Classes with Anomaly Detection [19.269724165953274]
Many existing set-valued classification methods do not consider the possibility that a new class that never appeared in the training data appears in the test data.
We propose a Generalized Prediction Set (GPS) approach to estimate the acceptance regions while considering the possibility of a new class in the test data.
Unlike previous methods, the proposed method achieves a good balance between accuracy, efficiency, and anomaly detection rate.
arXiv Detail & Related papers (2022-09-20T19:40:33Z) - Positive Unlabeled Contrastive Learning [14.975173394072053]
We extend the self-supervised pretraining paradigm to the classical positive unlabeled (PU) setting.
We develop a simple methodology to pseudo-label the unlabeled samples using a new PU-specific clustering scheme.
Our method handily outperforms state-of-the-art PU methods over several standard PU benchmark datasets.
arXiv Detail & Related papers (2022-06-01T20:16:32Z) - Agree to Disagree: Diversity through Disagreement for Better
Transferability [54.308327969778155]
We propose D-BAT (Diversity-By-disAgreement Training), which enforces agreement among the models on the training data.
We show how D-BAT naturally emerges from the notion of generalized discrepancy.
arXiv Detail & Related papers (2022-02-09T12:03:02Z) - Pre-training Is (Almost) All You Need: An Application to Commonsense
Reasoning [61.32992639292889]
Fine-tuning of pre-trained transformer models has become the standard approach for solving common NLP tasks.
We introduce a new scoring method that casts a plausibility ranking task in a full-text format.
We show that our method provides a much more stable training phase across random restarts.
arXiv Detail & Related papers (2020-04-29T10:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.