HEMP: High-order Entropy Minimization for neural network comPression
- URL: http://arxiv.org/abs/2107.05298v1
- Date: Mon, 12 Jul 2021 10:17:53 GMT
- Title: HEMP: High-order Entropy Minimization for neural network comPression
- Authors: Enzo Tartaglione, St\'ephane Lathuili\`ere, Attilio Fiandrotti, Marco
Cagnazzo, Marco Grangetto
- Abstract summary: We formulate the entropy of a quantized artificial neural network as a differentiable function that can be plugged as a regularization term into the cost function minimized by descent.
We show that HEMP is able to work in synergy with other approaches aiming at pruning or quantizing the model itself, delivering significant benefits in terms of storage size compressibility without harming the model's performance.
- Score: 20.448617917261874
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We formulate the entropy of a quantized artificial neural network as a
differentiable function that can be plugged as a regularization term into the
cost function minimized by gradient descent. Our formulation scales efficiently
beyond the first order and is agnostic of the quantization scheme. The network
can then be trained to minimize the entropy of the quantized parameters, so
that they can be optimally compressed via entropy coding. We experiment with
our entropy formulation at quantizing and compressing well-known network
architectures over multiple datasets. Our approach compares favorably over
similar methods, enjoying the benefits of higher order entropy estimate,
showing flexibility towards non-uniform quantization (we use Lloyd-max
quantization), scalability towards any entropy order to be minimized and
efficiency in terms of compression. We show that HEMP is able to work in
synergy with other approaches aiming at pruning or quantizing the model itself,
delivering significant benefits in terms of storage size compressibility
without harming the model's performance.
Related papers
- Compact Multi-Threshold Quantum Information Driven Ansatz For Strongly Interactive Lattice Spin Models [0.0]
We introduce a systematic procedure for ansatz building based on approximate Quantum Mutual Information (QMI)
Our approach generates a layered-structured ansatz, where each layer's qubit pairs are selected based on their QMI values, resulting in more efficient state preparation and optimization routines.
Our results show that the Multi-QIDA method reduces the computational complexity while maintaining high precision, making it a promising tool for quantum simulations in lattice spin models.
arXiv Detail & Related papers (2024-08-05T17:07:08Z) - Deep Neural Networks as Variational Solutions for Correlated Open
Quantum Systems [0.0]
We show that parametrizing the density matrix directly with more powerful models can yield better variational ansatz functions.
We present results for the dissipative one-dimensional transverse-field Ising model and a two-dimensional dissipative Heisenberg model.
arXiv Detail & Related papers (2024-01-25T13:41:34Z) - Quantum Semidefinite Programming with Thermal Pure Quantum States [0.5639904484784125]
We show that a quantization'' of the matrix multiplicative-weight algorithm can provide approximate solutions to SDPs quadratically faster than the best classical algorithms.
We propose a modification of this quantum algorithm and show that a similar speedup can be obtained by replacing the Gibbs-state sampler with the preparation of thermal pure quantum (TPQ) states.
arXiv Detail & Related papers (2023-10-11T18:00:53Z) - Quantization Aware Factorization for Deep Neural Network Compression [20.04951101799232]
decomposition of convolutional and fully-connected layers is an effective way to reduce parameters and FLOP in neural networks.
A conventional post-training quantization approach applied to networks with weights yields a drop in accuracy.
This motivated us to develop an algorithm that finds decomposed approximation directly with quantized factors.
arXiv Detail & Related papers (2023-08-08T21:38:02Z) - Absence of barren plateaus and scaling of gradients in the energy optimization of isometric tensor network states [0.0]
We consider energy problems for quantum many-body systems with extensive Hamiltonians and finite-range interactions.
We prove that variational optimization problems for matrix product states, tree tensor networks, and the multiscale entanglement renormalization ansatz are free of barren plateaus.
arXiv Detail & Related papers (2023-03-31T22:49:49Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
We propose a deep learning approach to solve Kohn-Sham Density Functional Theory (KS-DFT)
We prove that such an approach has the same expressivity as the SCF method, yet reduces the computational complexity.
In addition, we show that our approach enables us to explore more complex neural-based wave functions.
arXiv Detail & Related papers (2023-03-01T10:38:10Z) - Entropic Neural Optimal Transport via Diffusion Processes [105.34822201378763]
We propose a novel neural algorithm for the fundamental problem of computing the entropic optimal transport (EOT) plan between continuous probability distributions.
Our algorithm is based on the saddle point reformulation of the dynamic version of EOT which is known as the Schr"odinger Bridge problem.
In contrast to the prior methods for large-scale EOT, our algorithm is end-to-end and consists of a single learning step.
arXiv Detail & Related papers (2022-11-02T14:35:13Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via
Generalized Straight-Through Estimation [48.838691414561694]
Nonuniform-to-Uniform Quantization (N2UQ) is a method that can maintain the strong representation ability of nonuniform methods while being hardware-friendly and efficient.
N2UQ outperforms state-of-the-art nonuniform quantization methods by 0.71.8% on ImageNet.
arXiv Detail & Related papers (2021-11-29T18:59:55Z) - Targeted free energy estimation via learned mappings [66.20146549150475]
Free energy perturbation (FEP) was proposed by Zwanzig more than six decades ago as a method to estimate free energy differences.
FEP suffers from a severe limitation: the requirement of sufficient overlap between distributions.
One strategy to mitigate this problem, called Targeted Free Energy Perturbation, uses a high-dimensional mapping in configuration space to increase overlap.
arXiv Detail & Related papers (2020-02-12T11:10:00Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
Efficient modelling of feature interactions underpins supervised learning for non-sequential tasks.
To alleviate this issue, it has been proposed to implicitly represent the model parameters as a tensor.
For enhanced expressiveness, we generalize the framework to allow feature mapping to arbitrarily high-dimensional feature vectors.
arXiv Detail & Related papers (2020-01-27T22:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.