Calibrating Predictions to Decisions: A Novel Approach to Multi-Class
Calibration
- URL: http://arxiv.org/abs/2107.05719v1
- Date: Mon, 12 Jul 2021 20:17:28 GMT
- Title: Calibrating Predictions to Decisions: A Novel Approach to Multi-Class
Calibration
- Authors: Shengjia Zhao, Michael P. Kim, Roshni Sahoo, Tengyu Ma, Stefano Ermon
- Abstract summary: We introduce a new notion -- emphdecision calibration -- that requires the predicted distribution and true distribution to be indistinguishable'' to a set of downstream decision-makers.
Decision calibration improves decision-making on skin lesions and ImageNet classification with modern neural network.
- Score: 118.26862029820447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When facing uncertainty, decision-makers want predictions they can trust. A
machine learning provider can convey confidence to decision-makers by
guaranteeing their predictions are distribution calibrated -- amongst the
inputs that receive a predicted class probabilities vector $q$, the actual
distribution over classes is $q$. For multi-class prediction problems, however,
achieving distribution calibration tends to be infeasible, requiring sample
complexity exponential in the number of classes $C$. In this work, we introduce
a new notion -- \emph{decision calibration} -- that requires the predicted
distribution and true distribution to be ``indistinguishable'' to a set of
downstream decision-makers. When all possible decision makers are under
consideration, decision calibration is the same as distribution calibration.
However, when we only consider decision makers choosing between a bounded
number of actions (e.g. polynomial in $C$), our main result shows that
decisions calibration becomes feasible -- we design a recalibration algorithm
that requires sample complexity polynomial in the number of actions and the
number of classes. We validate our recalibration algorithm empirically:
compared to existing methods, decision calibration improves decision-making on
skin lesion and ImageNet classification with modern neural network predictors.
Related papers
- On Computationally Efficient Multi-Class Calibration [9.032290717007065]
Project calibration gives strong guarantees for all downstream decision makers.
It ensures that the probabilities predicted by summing the probabilities assigned to labels in $T$ are close to some perfectly calibrated binary predictor.
arXiv Detail & Related papers (2024-02-12T17:25:23Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
We introduce kernel-based calibration metrics that unify and generalize popular forms of calibration for both classification and regression.
These metrics admit differentiable sample estimates, making it easy to incorporate a calibration objective into empirical risk minimization.
We provide intuitive mechanisms to tailor calibration metrics to a decision task, and enforce accurate loss estimation and no regret decisions.
arXiv Detail & Related papers (2023-10-31T06:19:40Z) - On Calibrating Semantic Segmentation Models: Analyses and An Algorithm [51.85289816613351]
We study the problem of semantic segmentation calibration.
Model capacity, crop size, multi-scale testing, and prediction correctness have impact on calibration.
We propose a simple, unifying, and effective approach, namely selective scaling.
arXiv Detail & Related papers (2022-12-22T22:05:16Z) - Calibrating AI Models for Wireless Communications via Conformal
Prediction [55.47458839587949]
Conformal prediction is applied for the first time to the design of AI for communication systems.
This paper investigates the application of conformal prediction as a general framework to obtain AI models that produce decisions with formal calibration guarantees.
arXiv Detail & Related papers (2022-12-15T12:52:23Z) - Fair admission risk prediction with proportional multicalibration [0.16249424686052708]
Multicalibration constrains calibration error among flexibly-defined subpopulations.
It is possible for a decision-maker to learn to trust or distrust model predictions for specific groups.
We propose proportional multicalibration, a criteria that constrains the percent calibration error among groups and within prediction bins.
arXiv Detail & Related papers (2022-09-29T08:15:29Z) - Calibrated Selective Classification [34.08454890436067]
We develop a new approach to selective classification in which we propose a method for rejecting examples with "uncertain" uncertainties.
We present a framework for learning selectively calibrated models, where a separate selector network is trained to improve the selective calibration error of a given base model.
We demonstrate the empirical effectiveness of our approach on multiple image classification and lung cancer risk assessment tasks.
arXiv Detail & Related papers (2022-08-25T13:31:09Z) - Modular Conformal Calibration [80.33410096908872]
We introduce a versatile class of algorithms for recalibration in regression.
This framework allows one to transform any regression model into a calibrated probabilistic model.
We conduct an empirical study of MCC on 17 regression datasets.
arXiv Detail & Related papers (2022-06-23T03:25:23Z) - Hidden Heterogeneity: When to Choose Similarity-Based Calibration [12.788224825185633]
Black-box calibration methods are unable to detect subpopulations where calibration could improve prediction accuracy.
The paper proposes a quantitative measure for hidden heterogeneity (HH)
Experiments show that the improvements in calibration achieved by similarity-based calibration methods correlate with the amount of HH present and, given sufficient calibration data, generally exceed calibration achieved by global methods.
arXiv Detail & Related papers (2022-02-03T20:43:25Z) - Individual Calibration with Randomized Forecasting [116.2086707626651]
We show that calibration for individual samples is possible in the regression setup if the predictions are randomized.
We design a training objective to enforce individual calibration and use it to train randomized regression functions.
arXiv Detail & Related papers (2020-06-18T05:53:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.