A Graph Data Augmentation Strategy with Entropy Preserving
- URL: http://arxiv.org/abs/2107.06048v1
- Date: Tue, 13 Jul 2021 12:58:32 GMT
- Title: A Graph Data Augmentation Strategy with Entropy Preserving
- Authors: Xue Liu, Dan Sun, Wei Wei
- Abstract summary: We introduce a novel graph entropy definition as a quantitative index to evaluate feature information among a graph.
Under considerations of preserving graph entropy, we propose an effective strategy to generate training data using a perturbed mechanism.
Our proposed approach significantly enhances the robustness and generalization ability of GCNs during the training process.
- Score: 11.886325179121226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Graph Convolutional Networks (GCNs) proposed by Kipf and Welling are
effective models for semi-supervised learning, but facing the obstacle of
over-smoothing, which will weaken the representation ability of GCNs. Recently
some works are proposed to tackle with above limitation by randomly perturbing
graph topology or feature matrix to generate data augmentations as input for
training. However, these operations have to pay the price of information
structure integrity breaking, and inevitably sacrifice information
stochastically from original graph. In this paper, we introduce a novel graph
entropy definition as an quantitative index to evaluate feature information
diffusion among a graph. Under considerations of preserving graph entropy, we
propose an effective strategy to generate perturbed training data using a
stochastic mechanism but guaranteeing graph topology integrity and with only a
small amount of graph entropy decaying. Extensive experiments have been
conducted on real-world datasets and the results verify the effectiveness of
our proposed method in improving semi-supervised node classification accuracy
compared with a surge of baselines. Beyond that, our proposed approach
significantly enhances the robustness and generalization ability of GCNs during
the training process.
Related papers
- Rewiring Techniques to Mitigate Oversquashing and Oversmoothing in GNNs: A Survey [0.0]
Graph Neural Networks (GNNs) are powerful tools for learning from graph-structured data, but their effectiveness is often constrained by two critical challenges.
Oversquashing, where the excessive compression of information from distant nodes results in significant information loss, and oversmoothing, where repeated message-passing iterations homogenize node representations, obscuring meaningful distinctions.
In this survey, we examine graph rewiring techniques, a class of methods designed to address these structural bottlenecks by modifying graph topology to enhance information diffusion.
arXiv Detail & Related papers (2024-11-26T13:38:12Z) - Self-Supervised Conditional Distribution Learning on Graphs [15.730933577970687]
We present an end-to-end graph representation learning model to align the conditional distributions of weakly and strongly augmented features over the original features.
This alignment effectively reduces the risk of disrupting intrinsic semantic information through graph-structured data augmentation.
arXiv Detail & Related papers (2024-11-20T07:26:36Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF) is a model-agnostic unlearning method that can efficiently and accurately estimate parameter changes in response to a $epsilon$-mass perturbation in deleted data.
We conduct extensive experiments on four representative GNN models and three benchmark datasets to justify GIF's superiority in terms of unlearning efficacy, model utility, and unlearning efficiency.
arXiv Detail & Related papers (2023-04-06T03:02:54Z) - Diving into Unified Data-Model Sparsity for Class-Imbalanced Graph
Representation Learning [30.23894624193583]
Graph Neural Networks (GNNs) training upon non-Euclidean graph data often encounters relatively higher time costs.
We develop a unified data-model dynamic sparsity framework named Graph Decantation (GraphDec) to address challenges brought by training upon a massive class-imbalanced graph data.
arXiv Detail & Related papers (2022-10-01T01:47:00Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Scaling Up Graph Neural Networks Via Graph Coarsening [18.176326897605225]
Scalability of graph neural networks (GNNs) is one of the major challenges in machine learning.
In this paper, we propose to use graph coarsening for scalable training of GNNs.
We show that, simply applying off-the-shelf coarsening methods, we can reduce the number of nodes by up to a factor of ten without causing a noticeable downgrade in classification accuracy.
arXiv Detail & Related papers (2021-06-09T15:46:17Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
We present textbfGraph textbfModel textbfInversion attack (GraphMI), which aims to extract private graph data of the training graph by inverting GNN.
Specifically, we propose a projected gradient module to tackle the discreteness of graph edges while preserving the sparsity and smoothness of graph features.
We design a graph auto-encoder module to efficiently exploit graph topology, node attributes, and target model parameters for edge inference.
arXiv Detail & Related papers (2021-06-05T07:07:52Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.