FetalNet: Multi-task deep learning framework for fetal ultrasound
biometric measurements
- URL: http://arxiv.org/abs/2107.06943v1
- Date: Wed, 14 Jul 2021 19:13:33 GMT
- Title: FetalNet: Multi-task deep learning framework for fetal ultrasound
biometric measurements
- Authors: Szymon P{\l}otka, Tomasz W{\l}odarczyk, Adam Klasa, Micha{\l} Lipa,
Arkadiusz Sitek, Tomasz Trzci\'nski
- Abstract summary: We propose an end-to-end multi-task neural network called FetalNet with an attention mechanism and stacked module for fetal ultrasound scan video analysis.
The main goal in fetal ultrasound video analysis is to find proper standard planes to measure the fetal head, abdomen and femur.
Our method called FetalNet outperforms existing state-of-the-art methods in both classification and segmentation in fetal ultrasound video recordings.
- Score: 11.364211664829567
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we propose an end-to-end multi-task neural network called
FetalNet with an attention mechanism and stacked module for spatio-temporal
fetal ultrasound scan video analysis. Fetal biometric measurement is a standard
examination during pregnancy used for the fetus growth monitoring and
estimation of gestational age and fetal weight. The main goal in fetal
ultrasound scan video analysis is to find proper standard planes to measure the
fetal head, abdomen and femur. Due to natural high speckle noise and shadows in
ultrasound data, medical expertise and sonographic experience are required to
find the appropriate acquisition plane and perform accurate measurements of the
fetus. In addition, existing computer-aided methods for fetal US biometric
measurement address only one single image frame without considering temporal
features. To address these shortcomings, we propose an end-to-end multi-task
neural network for spatio-temporal ultrasound scan video analysis to
simultaneously localize, classify and measure the fetal body parts. We propose
a new encoder-decoder segmentation architecture that incorporates a
classification branch. Additionally, we employ an attention mechanism with a
stacked module to learn salient maps to suppress irrelevant US regions and
efficient scan plane localization. We trained on the fetal ultrasound video
comes from routine examinations of 700 different patients. Our method called
FetalNet outperforms existing state-of-the-art methods in both classification
and segmentation in fetal ultrasound video recordings.
Related papers
- MMSummary: Multimodal Summary Generation for Fetal Ultrasound Video [13.231546105751015]
We present the first automated multimodal generation, MMSummary, for medical imaging video, particularly with a focus on fetal ultrasound analysis.
MMSummary is designed as a three-stage pipeline, progressing from anatomy detection to captioning and finally segmentation and measurement.
Based on reported experiments is estimated to reduce scanning time by approximately 31.5%, thereby suggesting the potential to enhance workflow efficiency.
arXiv Detail & Related papers (2024-08-07T13:30:58Z) - Multi-Task Learning Approach for Unified Biometric Estimation from Fetal
Ultrasound Anomaly Scans [0.8213829427624407]
We propose a multi-task learning approach to classify the region into head, abdomen and femur.
We were able to achieve a mean absolute error (MAE) of 1.08 mm on head circumference, 1.44 mm on abdomen circumference and 1.10 mm on femur length with a classification accuracy of 99.91%.
arXiv Detail & Related papers (2023-11-16T06:35:02Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Tissue Segmentation of Thick-Slice Fetal Brain MR Scans with Guidance
from High-Quality Isotropic Volumes [52.242103848335354]
We propose a novel Cycle-Consistent Domain Adaptation Network (C2DA-Net) to efficiently transfer the knowledge learned from high-quality isotropic volumes for accurate tissue segmentation of thick-slice scans.
Our C2DA-Net can fully utilize a small set of annotated isotropic volumes to guide tissue segmentation on unannotated thick-slice scans.
arXiv Detail & Related papers (2023-08-13T12:51:15Z) - Localizing Scan Targets from Human Pose for Autonomous Lung Ultrasound
Imaging [61.60067283680348]
With the advent of COVID-19 global pandemic, there is a need to fully automate ultrasound imaging.
We propose a vision-based, data driven method that incorporates learning-based computer vision techniques.
Our method attains an accuracy level of 15.52 (9.47) mm for probe positioning and 4.32 (3.69)deg for probe orientation, with a success rate above 80% under an error threshold of 25mm for all scan targets.
arXiv Detail & Related papers (2022-12-15T14:34:12Z) - Deep Learning Fetal Ultrasound Video Model Match Human Observers in
Biometric Measurements [8.468600443532413]
This work investigates the use of deep convolutional neural networks (CNN) to automatically perform measurements of fetal body parts.
The observed differences in measurement values were within the range inter- and intra-observer variability.
We argue that FUVAI has the potential to assist sonographers who perform fetal biometric measurements in clinical settings.
arXiv Detail & Related papers (2022-05-27T09:00:19Z) - BabyNet: Residual Transformer Module for Birth Weight Prediction on
Fetal Ultrasound Video [8.468600443532413]
We propose the Residual Transformer Module which extends a 3D ResNet-based network for analysis of 2D+t-temporal ultrasound video scans.
Our end-to-end method, called BabyNet, automatically predicts fetal birth weight based on fetal ultrasound video scans.
arXiv Detail & Related papers (2022-05-19T08:27:23Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Voice-assisted Image Labelling for Endoscopic Ultrasound Classification
using Neural Networks [48.732863591145964]
We propose a multi-modal convolutional neural network architecture that labels endoscopic ultrasound (EUS) images from raw verbal comments provided by a clinician during the procedure.
Our results show a prediction accuracy of 76% at image level on a dataset with 5 different labels.
arXiv Detail & Related papers (2021-10-12T21:22:24Z) - AutoFB: Automating Fetal Biometry Estimation from Standard Ultrasound
Planes [10.745788530692305]
The proposed framework semantically segments the key fetal anatomies using state-of-the-art segmentation models.
We show that the network with the best segmentation performance tends to be more accurate for biometry estimation.
arXiv Detail & Related papers (2021-07-12T08:42:31Z) - Hybrid Attention for Automatic Segmentation of Whole Fetal Head in
Prenatal Ultrasound Volumes [52.53375964591765]
We propose the first fully-automated solution to segment the whole fetal head in US volumes.
The segmentation task is firstly formulated as an end-to-end volumetric mapping under an encoder-decoder deep architecture.
We then combine the segmentor with a proposed hybrid attention scheme (HAS) to select discriminative features and suppress the non-informative volumetric features.
arXiv Detail & Related papers (2020-04-28T14:43:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.