Free-Text Keystroke Dynamics for User Authentication
- URL: http://arxiv.org/abs/2107.07009v1
- Date: Thu, 1 Jul 2021 14:46:10 GMT
- Title: Free-Text Keystroke Dynamics for User Authentication
- Authors: Jianwei Li, Han-Chih Chang, Mark Stamp
- Abstract summary: We consider the problem of verifying user identity based on keystroke dynamics obtained from free-text.
For this image-like feature, a convolution neural network (CNN) with cutout achieves the best results.
A hybrid model consisting of a CNN and a recurrent neural network (RNN) is also shown to outperform previous research in this field.
- Score: 7.447152998809457
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this research, we consider the problem of verifying user identity based on
keystroke dynamics obtained from free-text. We employ a novel feature
engineering method that generates image-like transition matrices. For this
image-like feature, a convolution neural network (CNN) with cutout achieves the
best results. A hybrid model consisting of a CNN and a recurrent neural network
(RNN) is also shown to outperform previous research in this field.
Related papers
- Residual Random Neural Networks [0.0]
Single-layer feedforward neural network with random weights is a recurring motif in the neural networks literature.
We show that one can obtain good classification results even if the number of hidden neurons has the same order of magnitude as the dimensionality of the data samples.
arXiv Detail & Related papers (2024-10-25T22:00:11Z) - NEAR: A Training-Free Pre-Estimator of Machine Learning Model Performance [0.0]
We propose a zero-cost proxy Network Expressivity by Activation Rank (NEAR) to identify the optimal neural network without training.
We demonstrate the cutting-edge correlation between this network score and the model accuracy on NAS-Bench-101 and NATS-Bench-SSS/TSS.
arXiv Detail & Related papers (2024-08-16T14:38:14Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - A Deep Neural Framework for Image Caption Generation Using GRU-Based
Attention Mechanism [5.855671062331371]
This study aims to develop a system that uses a pre-trained convolutional neural network (CNN) to extract features from an image, integrates the features with an attention mechanism, and creates captions using a recurrent neural network (RNN)
On the MSCOCO dataset, the experimental results achieve competitive performance against state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-03T09:47:59Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
Current practice requires expensive computational costs in model training for performance prediction.
We propose a novel framework for neural network selection by analyzing the governing dynamics over synaptic connections (edges) during training.
Our framework is built on the fact that back-propagation during neural network training is equivalent to the dynamical evolution of synaptic connections.
arXiv Detail & Related papers (2022-01-11T20:53:15Z) - Dynamic Gesture Recognition [0.0]
It is possible to use machine learning to classify images and/or videos instead of the traditional computer vision algorithms.
The aim of this project is to builda symbiosis between a convolutional neural network (CNN) and a recurrent neural network (RNN)
arXiv Detail & Related papers (2021-09-20T09:45:29Z) - Modeling the Nonsmoothness of Modern Neural Networks [35.93486244163653]
We quantify the nonsmoothness using a feature named the sum of the magnitude of peaks (SMP)
We envision that the nonsmoothness feature can potentially be used as a forensic tool for regression-based applications of neural networks.
arXiv Detail & Related papers (2021-03-26T20:55:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.