MCL-GAN: Generative Adversarial Networks with Multiple Specialized Discriminators
- URL: http://arxiv.org/abs/2107.07260v3
- Date: Wed, 3 Apr 2024 10:56:36 GMT
- Title: MCL-GAN: Generative Adversarial Networks with Multiple Specialized Discriminators
- Authors: Jinyoung Choi, Bohyung Han,
- Abstract summary: We propose a framework of generative adversarial networks with multiple discriminators.
We guide each discriminator to have expertise in a subset of the entire data.
Despite the use of multiple discriminators, the backbone networks are shared across the discriminators.
- Score: 47.19216713803009
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose a framework of generative adversarial networks with multiple discriminators, which collaborate to represent a real dataset more effectively. Our approach facilitates learning a generator consistent with the underlying data distribution based on real images and thus mitigates the chronic mode collapse problem. From the inspiration of multiple choice learning, we guide each discriminator to have expertise in a subset of the entire data and allow the generator to find reasonable correspondences between the latent and real data spaces automatically without extra supervision for training examples. Despite the use of multiple discriminators, the backbone networks are shared across the discriminators and the increase in training cost is marginal. We demonstrate the effectiveness of our algorithm using multiple evaluation metrics in the standard datasets for diverse tasks.
Related papers
- Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Generalizable Low-Resource Activity Recognition with Diverse and
Discriminative Representation Learning [24.36351102003414]
Human activity recognition (HAR) is a time series classification task that focuses on identifying the motion patterns from human sensor readings.
We propose a novel approach called Diverse and Discriminative representation Learning (DDLearn) for generalizable lowresource HAR.
Our method significantly outperforms state-of-art methods by an average accuracy improvement of 9.5%.
arXiv Detail & Related papers (2023-05-25T08:24:22Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
Learning from fully-unlabeled data is challenging in Multimedia Forensics problems, such as Person Re-Identification and Text Authorship Attribution.
Recent self-supervised learning methods have shown to be effective when dealing with fully-unlabeled data in cases where the underlying classes have significant semantic differences.
We propose a strategy to tackle Person Re-Identification and Text Authorship Attribution by enabling learning from unlabeled data even when samples from different classes are not prominently diverse.
arXiv Detail & Related papers (2022-02-07T13:08:11Z) - Multimodal Adversarially Learned Inference with Factorized
Discriminators [10.818838437018682]
We propose a novel approach to generative modeling of multimodal data based on generative adversarial networks.
To learn a coherent multimodal generative model, we show that it is necessary to align different encoder distributions with the joint decoder distribution simultaneously.
By taking advantage of contrastive learning through factorizing the discriminator, we train our model on unimodal data.
arXiv Detail & Related papers (2021-12-20T08:18:49Z) - Data-Efficient Instance Generation from Instance Discrimination [40.71055888512495]
We propose a data-efficient Instance Generation (InsGen) method based on instance discrimination.
In this work, we propose a data-efficient Instance Generation (InsGen) method based on instance discrimination.
arXiv Detail & Related papers (2021-06-08T17:52:59Z) - ORDisCo: Effective and Efficient Usage of Incremental Unlabeled Data for
Semi-supervised Continual Learning [52.831894583501395]
Continual learning assumes the incoming data are fully labeled, which might not be applicable in real applications.
We propose deep Online Replay with Discriminator Consistency (ORDisCo) to interdependently learn a classifier with a conditional generative adversarial network (GAN)
We show ORDisCo achieves significant performance improvement on various semi-supervised learning benchmark datasets for SSCL.
arXiv Detail & Related papers (2021-01-02T09:04:14Z) - Multi-modal AsynDGAN: Learn From Distributed Medical Image Data without
Sharing Private Information [55.866673486753115]
We propose an extendable and elastic learning framework to preserve privacy and security.
The proposed framework is named distributed Asynchronized Discriminator Generative Adrial Networks (AsynDGAN)
arXiv Detail & Related papers (2020-12-15T20:41:24Z) - Lessons Learned from the Training of GANs on Artificial Datasets [0.0]
Generative Adversarial Networks (GANs) have made great progress in synthesizing realistic images in recent years.
GANs are prone to underfitting or overfitting, making the analysis of them difficult and constrained.
We train them on artificial datasets where there are infinitely many samples and the real data distributions are simple.
We find that training mixtures of GANs leads to more performance gain compared to increasing the network depth or width.
arXiv Detail & Related papers (2020-07-13T14:51:02Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
Training stability is still a lingering concern of generative adversarial networks (GANs)
In this paper, we explore a relation network architecture for the discriminator and design a triplet loss which performs better generalization and stability.
Experiments on benchmark datasets show that the proposed relation discriminator and new loss can provide significant improvement on variable vision tasks.
arXiv Detail & Related papers (2020-02-24T11:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.