DynaDog+T: A Parametric Animal Model for Synthetic Canine Image
Generation
- URL: http://arxiv.org/abs/2107.07330v1
- Date: Thu, 15 Jul 2021 13:53:10 GMT
- Title: DynaDog+T: A Parametric Animal Model for Synthetic Canine Image
Generation
- Authors: Jake Deane, Sinead Kearney, Kwang In Kim, Darren Cosker
- Abstract summary: We introduce a parametric canine model, DynaDog+T, for generating synthetic canine images and data.
We use this data for a common computer vision task, binary segmentation, which would otherwise be difficult due to the lack of available data.
- Score: 23.725295519857976
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthetic data is becoming increasingly common for training computer vision
models for a variety of tasks. Notably, such data has been applied in tasks
related to humans such as 3D pose estimation where data is either difficult to
create or obtain in realistic settings. Comparatively, there has been less work
into synthetic animal data and it's uses for training models. Consequently, we
introduce a parametric canine model, DynaDog+T, for generating synthetic canine
images and data which we use for a common computer vision task, binary
segmentation, which would otherwise be difficult due to the lack of available
data.
Related papers
- 3D Human Reconstruction in the Wild with Synthetic Data Using Generative Models [52.96248836582542]
We propose an effective approach based on recent diffusion models, termed HumanWild, which can effortlessly generate human images and corresponding 3D mesh annotations.
By exclusively employing generative models, we generate large-scale in-the-wild human images and high-quality annotations, eliminating the need for real-world data collection.
arXiv Detail & Related papers (2024-03-17T06:31:16Z) - Image Captions are Natural Prompts for Text-to-Image Models [70.30915140413383]
We analyze the relationship between the training effect of synthetic data and the synthetic data distribution induced by prompts.
We propose a simple yet effective method that prompts text-to-image generative models to synthesize more informative and diverse training data.
Our method significantly improves the performance of models trained on synthetic training data.
arXiv Detail & Related papers (2023-07-17T14:38:11Z) - Robust Category-Level 3D Pose Estimation from Synthetic Data [17.247607850702558]
We introduce SyntheticP3D, a new synthetic dataset for object pose estimation generated from CAD models.
We propose a novel approach (CC3D) for training neural mesh models that perform pose estimation via inverse rendering.
arXiv Detail & Related papers (2023-05-25T14:56:03Z) - Synthetic Image Data for Deep Learning [0.294944680995069]
Realistic synthetic image data rendered from 3D models can be used to augment image sets and train image classification semantic segmentation models.
We show how high quality physically-based rendering and domain randomization can efficiently create a large synthetic dataset based on production 3D CAD models of a real vehicle.
arXiv Detail & Related papers (2022-12-12T20:28:13Z) - Synthetic Data for Object Classification in Industrial Applications [53.180678723280145]
In object classification, capturing a large number of images per object and in different conditions is not always possible.
This work explores the creation of artificial images using a game engine to cope with limited data in the training dataset.
arXiv Detail & Related papers (2022-12-09T11:43:04Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z) - Learning Dense Correspondence from Synthetic Environments [27.841736037738286]
Existing methods map manually labelled human pixels in real 2D images onto the 3D surface, which is prone to human error.
We propose to solve the problem of data scarcity by training 2D-3D human mapping algorithms using automatically generated synthetic data.
arXiv Detail & Related papers (2022-03-24T08:13:26Z) - Task2Sim : Towards Effective Pre-training and Transfer from Synthetic
Data [74.66568380558172]
We study the transferability of pre-trained models based on synthetic data generated by graphics simulators to downstream tasks.
We introduce Task2Sim, a unified model mapping downstream task representations to optimal simulation parameters.
It learns this mapping by training to find the set of best parameters on a set of "seen" tasks.
Once trained, it can then be used to predict best simulation parameters for novel "unseen" tasks in one shot.
arXiv Detail & Related papers (2021-11-30T19:25:27Z) - Fake It Till You Make It: Face analysis in the wild using synthetic data
alone [9.081019005437309]
We show that it is possible to perform face-related computer vision in the wild using synthetic data alone.
We describe how to combine a procedurally-generated 3D face model with a comprehensive library of hand-crafted assets to render training images with unprecedented realism.
arXiv Detail & Related papers (2021-09-30T13:07:04Z) - Synthetic Data for Model Selection [2.4499092754102874]
We show that synthetic data can be beneficial for model selection.
We introduce a novel method to calibrate the synthetic error estimation to fit that of the real domain.
arXiv Detail & Related papers (2021-05-03T09:52:03Z) - Cascaded deep monocular 3D human pose estimation with evolutionary
training data [76.3478675752847]
Deep representation learning has achieved remarkable accuracy for monocular 3D human pose estimation.
This paper proposes a novel data augmentation method that is scalable for massive amount of training data.
Our method synthesizes unseen 3D human skeletons based on a hierarchical human representation and synthesizings inspired by prior knowledge.
arXiv Detail & Related papers (2020-06-14T03:09:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.