CLSRIL-23: Cross Lingual Speech Representations for Indic Languages
- URL: http://arxiv.org/abs/2107.07402v1
- Date: Thu, 15 Jul 2021 15:42:43 GMT
- Title: CLSRIL-23: Cross Lingual Speech Representations for Indic Languages
- Authors: Anirudh Gupta, Harveen Singh Chadha, Priyanshi Shah, Neeraj Chimmwal,
Ankur Dhuriya, Rishabh Gaur, Vivek Raghavan
- Abstract summary: CLSRIL-23 is a self supervised learning based model which learns cross lingual speech representations from raw audio across 23 Indic languages.
It is built on top of wav2vec 2.0 which is solved by training a contrastive task over masked latent speech representations.
We compare the language wise loss during pretraining to compare effects of monolingual and multilingual pretraining.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present a CLSRIL-23, a self supervised learning based audio pre-trained
model which learns cross lingual speech representations from raw audio across
23 Indic languages. It is built on top of wav2vec 2.0 which is solved by
training a contrastive task over masked latent speech representations and
jointly learns the quantization of latents shared across all languages. We
compare the language wise loss during pretraining to compare effects of
monolingual and multilingual pretraining. Performance on some downstream
fine-tuning tasks for speech recognition is also compared and our experiments
show that multilingual pretraining outperforms monolingual training, in terms
of learning speech representations which encodes phonetic similarity of
languages and also in terms of performance on down stream tasks. A decrease of
5% is observed in WER and 9.5% in CER when a multilingual pretrained model is
used for finetuning in Hindi. All the code models are also open sourced.
CLSRIL-23 is a model trained on $23$ languages and almost 10,000 hours of audio
data to facilitate research in speech recognition for Indic languages. We hope
that new state of the art systems will be created using the self supervised
approach, especially for low resources Indic languages.
Related papers
- Multilingual self-supervised speech representations improve the speech
recognition of low-resource African languages with codeswitching [65.74653592668743]
Finetuning self-supervised multilingual representations reduces absolute word error rates by up to 20%.
In circumstances with limited training data finetuning self-supervised representations is a better performing and viable solution.
arXiv Detail & Related papers (2023-11-25T17:05:21Z) - AudioPaLM: A Large Language Model That Can Speak and Listen [79.44757696533709]
We introduce AudioPaLM, a large language model for speech understanding and generation.
AudioPaLM fuses text-based and speech-based language models.
It can process and generate text and speech with applications including speech recognition and speech-to-speech translation.
arXiv Detail & Related papers (2023-06-22T14:37:54Z) - ComSL: A Composite Speech-Language Model for End-to-End Speech-to-Text
Translation [79.66359274050885]
We present ComSL, a speech-language model built atop a composite architecture of public pretrained speech-only and language-only models.
Our approach has demonstrated effectiveness in end-to-end speech-to-text translation tasks.
arXiv Detail & Related papers (2023-05-24T07:42:15Z) - Learning Cross-lingual Visual Speech Representations [108.68531445641769]
Cross-lingual self-supervised visual representation learning has been a growing research topic in the last few years.
We use the recently-proposed Raw Audio-Visual Speechs (RAVEn) framework to pre-train an audio-visual model with unlabelled data.
Our experiments show that: (1) multi-lingual models with more data outperform monolingual ones, but, when keeping the amount of data fixed, monolingual models tend to reach better performance.
arXiv Detail & Related papers (2023-03-14T17:05:08Z) - Code Switched and Code Mixed Speech Recognition for Indic languages [0.0]
Training multilingual automatic speech recognition (ASR) systems is challenging because acoustic and lexical information is typically language specific.
We compare the performance of end to end multilingual speech recognition system to the performance of monolingual models conditioned on language identification (LID)
We also propose a similar technique to solve the Code Switched problem and achieve a WER of 21.77 and 28.27 over Hindi-English and Bengali-English respectively.
arXiv Detail & Related papers (2022-03-30T18:09:28Z) - Exploring Teacher-Student Learning Approach for Multi-lingual
Speech-to-Intent Classification [73.5497360800395]
We develop an end-to-end system that supports multiple languages.
We exploit knowledge from a pre-trained multi-lingual natural language processing model.
arXiv Detail & Related papers (2021-09-28T04:43:11Z) - Improved Language Identification Through Cross-Lingual Self-Supervised
Learning [37.32193095549614]
We extend previous self-supervised work on language identification by experimenting with pre-trained models.
Results on a 25 languages setup show that with only 10 minutes of labeled data per language, a cross-lingually pre-trained model can achieve over 93% accuracy.
arXiv Detail & Related papers (2021-07-08T19:37:06Z) - Unsupervised Cross-lingual Representation Learning for Speech
Recognition [63.85924123692923]
XLSR learns cross-lingual speech representations by pretraining a single model from the raw waveform of speech in multiple languages.
We build on wav2vec 2.0 which is trained by solving a contrastive task over masked latent speech representations.
Experiments show that cross-lingual pretraining significantly outperforms monolingual pretraining.
arXiv Detail & Related papers (2020-06-24T18:25:05Z) - CSTNet: Contrastive Speech Translation Network for Self-Supervised
Speech Representation Learning [11.552745999302905]
More than half of the 7,000 languages in the world are in imminent danger of going extinct.
It is relatively easy to obtain textual translations corresponding to speech.
We construct a convolutional neural network audio encoder capable of extracting linguistic representations from speech.
arXiv Detail & Related papers (2020-06-04T12:21:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.