Controlled AutoEncoders to Generate Faces from Voices
- URL: http://arxiv.org/abs/2107.07988v1
- Date: Fri, 16 Jul 2021 16:04:29 GMT
- Title: Controlled AutoEncoders to Generate Faces from Voices
- Authors: Hao Liang, Lulan Yu, Guikang Xu, Bhiksha Raj, Rita Singh
- Abstract summary: We propose a framework to morph a target face in response to a given voice in a way that facial features are implicitly guided by learned voice-face correlation.
We evaluate the framework on VoxCelab and VGGFace datasets through human subjects and face retrieval.
- Score: 30.062970046955577
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multiple studies in the past have shown that there is a strong correlation
between human vocal characteristics and facial features. However, existing
approaches generate faces simply from voice, without exploring the set of
features that contribute to these observed correlations. A computational
methodology to explore this can be devised by rephrasing the question to: "how
much would a target face have to change in order to be perceived as the
originator of a source voice?" With this in perspective, we propose a framework
to morph a target face in response to a given voice in a way that facial
features are implicitly guided by learned voice-face correlation in this paper.
Our framework includes a guided autoencoder that converts one face to another,
controlled by a unique model-conditioning component called a gating controller
which modifies the reconstructed face based on input voice recordings. We
evaluate the framework on VoxCelab and VGGFace datasets through human subjects
and face retrieval. Various experiments demonstrate the effectiveness of our
proposed model.
Related papers
- MimicTalk: Mimicking a personalized and expressive 3D talking face in minutes [74.82911268630463]
Talking face generation (TFG) aims to animate a target identity's face to create realistic talking videos.
MimicTalk exploits the rich knowledge from a NeRF-based person-agnostic generic model for improving the efficiency and robustness of personalized TFG.
Experiments show that our MimicTalk surpasses previous baselines regarding video quality, efficiency, and expressiveness.
arXiv Detail & Related papers (2024-10-09T10:12:37Z) - Seeing Your Speech Style: A Novel Zero-Shot Identity-Disentanglement Face-based Voice Conversion [5.483488375189695]
Face-based Voice Conversion (FVC) is a novel task that leverages facial images to generate the target speaker's voice style.
Previous work has two shortcomings: (1) suffering from obtaining facial embeddings that are well-aligned with the speaker's voice identity information, and (2) inadequacy in decoupling content and speaker identity information from the audio input.
We present a novel FVC method, Identity-Disentanglement Face-based Voice Conversion (ID-FaceVC), which overcomes the above two limitations.
arXiv Detail & Related papers (2024-09-01T11:51:18Z) - Hear Your Face: Face-based voice conversion with F0 estimation [18.66502308601214]
We present a novel face-based voice conversion framework, derived solely from an individual's facial images.
Our framework demonstrates superior speech generation quality and the ability to align facial features with voice characteristics.
arXiv Detail & Related papers (2024-08-19T08:47:03Z) - RealTalk: Real-time and Realistic Audio-driven Face Generation with 3D Facial Prior-guided Identity Alignment Network [48.95833484103569]
RealTalk is an audio-to-expression transformer and a high-fidelity expression-to-face framework.
In the first component, we consider both identity and intra-personal variation features related to speaking lip movements.
In the second component, we design a lightweight facial identity alignment (FIA) module.
This novel design allows us to generate fine details in real-time, without depending on sophisticated and inefficient feature alignment modules.
arXiv Detail & Related papers (2024-06-26T12:09:59Z) - Speech2UnifiedExpressions: Synchronous Synthesis of Co-Speech Affective Face and Body Expressions from Affordable Inputs [67.27840327499625]
We present a multimodal learning-based method to simultaneously synthesize co-speech facial expressions and upper-body gestures for digital characters.
Our approach learns from sparse face landmarks and upper-body joints, estimated directly from video data, to generate plausible emotive character motions.
arXiv Detail & Related papers (2024-06-26T04:53:11Z) - Controllable Talking Face Generation by Implicit Facial Keypoints Editing [6.036277153327655]
We present ControlTalk, a talking face generation method to control face expression deformation based on driven audio.
Our experiments show that our method is superior to state-of-the-art performance on widely used benchmarks, including HDTF and MEAD.
arXiv Detail & Related papers (2024-06-05T02:54:46Z) - FaceChain-ImagineID: Freely Crafting High-Fidelity Diverse Talking Faces from Disentangled Audio [45.71036380866305]
We abstract the process of people hearing speech, extracting meaningful cues, and creating dynamically audio-consistent talking faces from a single audio.
Specifically, it involves two critical challenges: one is to effectively decouple identity, content, and emotion from entangled audio, and the other is to maintain intra-video diversity and inter-video consistency.
We introduce the Controllable Coherent Frame generation, which involves the flexible integration of three trainable adapters with frozen Latent Diffusion Models.
arXiv Detail & Related papers (2024-03-04T09:59:48Z) - ChatAnything: Facetime Chat with LLM-Enhanced Personas [87.76804680223003]
We propose the mixture of voices (MoV) and the mixture of diffusers (MoD) for diverse voice and appearance generation.
For MoV, we utilize the text-to-speech (TTS) algorithms with a variety of pre-defined tones.
MoD, we combine the recent popular text-to-image generation techniques and talking head algorithms to streamline the process of generating talking objects.
arXiv Detail & Related papers (2023-11-12T08:29:41Z) - Face-Driven Zero-Shot Voice Conversion with Memory-based Face-Voice
Alignment [33.55724004790504]
This paper presents a novel task, zero-shot voice conversion based on face images (zero-shot FaceVC)
To address this task, we propose a face-voice memory-based zero-shot FaceVC method.
We demonstrate the superiority of our proposed method on the zero-shot FaceVC task.
arXiv Detail & Related papers (2023-09-18T04:08:02Z) - DFA-NeRF: Personalized Talking Head Generation via Disentangled Face
Attributes Neural Rendering [69.9557427451339]
We propose a framework based on neural radiance field to pursue high-fidelity talking head generation.
Specifically, neural radiance field takes lip movements features and personalized attributes as two disentangled conditions.
We show that our method achieves significantly better results than state-of-the-art methods.
arXiv Detail & Related papers (2022-01-03T18:23:38Z) - Pose-Controllable Talking Face Generation by Implicitly Modularized
Audio-Visual Representation [96.66010515343106]
We propose a clean yet effective framework to generate pose-controllable talking faces.
We operate on raw face images, using only a single photo as an identity reference.
Our model has multiple advanced capabilities including extreme view robustness and talking face frontalization.
arXiv Detail & Related papers (2021-04-22T15:10:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.