Anonymous communication protocol over quantum networks
- URL: http://arxiv.org/abs/2107.08164v1
- Date: Sat, 17 Jul 2021 02:51:15 GMT
- Title: Anonymous communication protocol over quantum networks
- Authors: Beili Gong, Wei Cui
- Abstract summary: We propose a W state-based protocol for anonymously transmitting quantum messages in a quantum network.
We develop three sub-protocols using the W state, including the quantum collision detection protocol and the quantum notification protocol.
- Score: 5.61186040823947
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a W state-based protocol for anonymously transmitting quantum
messages in a quantum network. Different from the existing protocols [A.
Unnikrishnan, et al., Phys. Rev. Lett. 122, 240501 (2019)], the proposed
protocol can be effectively implemented in the network only equipped with
quantum channels and regular broadcast channels. Throughout the design
procedure, we develop three sub-protocols using the W state, including the
quantum collision detection protocol and the quantum notification protocol.
Moreover, together with the conventional anonymous entanglement protocol, the
whole anonymous communication protocol has been constructed. Finally, we
examine the correctness and security of the proposed quantum anonymous
communication protocol.
Related papers
- Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - A Secure Quantum Key Distribution Protocol Using Two-Particle Transmission [0.0]
Unextendible Product Bases (UPBs) hold promise in quantum cryptography due to their inherent indistinguishability.
This work introduces a protocol utilizing UPBs to establish quantum keys between distant parties.
arXiv Detail & Related papers (2024-03-20T14:33:17Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Two-Server Oblivious Transfer for Quantum Messages [71.78056556634196]
We propose two-server oblivious transfer protocols for quantum messages.
Oblivious transfer is considered as a cryptographic primitive task for quantum information processing over quantum network.
arXiv Detail & Related papers (2022-11-07T05:12:24Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Anonymous multi-party quantum computation with a third party [0.8356765961526955]
We show that the protocol is an anonymous multi-party quantum addition protocol rather than a secure multi-party quantum addition protocol.
We propose a new anonymous multiparty quantum protocol based on our original protocol.
arXiv Detail & Related papers (2021-10-23T14:27:12Z) - Quantum Secure Direct Communication with Mutual Authentication using a
Single Basis [2.9542356825059715]
We propose a new theoretical scheme for quantum secure direct communication (QSDC) with user authentication.
The present protocol uses only one orthogonal basis of single-qubit states to encode the secret message.
We discuss the security of the proposed protocol against some common attacks and show that no eaves-dropper can get any information from the quantum and classical channels.
arXiv Detail & Related papers (2021-01-10T16:32:42Z) - Two-party quantum private comparison based on eight-qubit entangled
state [0.7130302992490973]
The purpose of quantum private comparison (QPC) is to solve "Tierce problem" using quantum mechanics laws.
We consider for the first time the usefulness of eight-qubit entangled states for QPC by proposing a new protocol.
arXiv Detail & Related papers (2021-01-05T12:07:45Z) - Quantum direct communication protocols using discrete-time quantum walk [1.9551668880584971]
We propose two quan-tum direct communication protocols, a Quantum Secure Direct Communication (QSDC) protocoland a Controlled Quantum Dialogue (CQD) protocol using discrete-time quantum walk on a cycle.
The proposed protocols are unconditionally secure against various attacks such as the intercept-resend attack, the denial of service attack, and the man-in-the-middle attack.
arXiv Detail & Related papers (2020-04-07T11:16:09Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
We propose a canonical method to derive a secure quantum network code over a multiple unicast quantum network.
Our code correctly transmits quantum states when there is no attack.
It also guarantees the secrecy of the transmitted quantum state even with the existence of an attack.
arXiv Detail & Related papers (2020-03-30T09:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.