Shortcuts to Adiabaticity for Open Systems in Circuit Quantum
Electrodynamics
- URL: http://arxiv.org/abs/2107.08417v2
- Date: Mon, 18 Oct 2021 05:46:18 GMT
- Title: Shortcuts to Adiabaticity for Open Systems in Circuit Quantum
Electrodynamics
- Authors: Zelong Yin, Chunzhen Li, Jonathan Allcock, Yicong Zheng, Xiu Gu,
Maochun Dai, Shengyu Zhang, Shuoming An
- Abstract summary: We present the first experimental demonstration of shortcuts to adiabaticity (STA) for open quantum systems.
We reduce the adiabatic evolution time of a single lossy mode from 800 ns to 100 ns by applying a counterdiabatic driving pulse.
Our results pave the way for accelerating dynamics of open quantum systems and have potential applications in designing fast open-system protocols.
- Score: 11.231358835691962
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Shortcuts to adiabaticity (STA) are powerful quantum control methods,
allowing quick evolution into target states of otherwise slow adiabatic
dynamics. Such methods have widespread applications in quantum technologies,
and various STA protocols have been demonstrated in closed systems. However,
realizing STA for open quantum systems has presented a greater challenge, due
to complex controls required in existing proposals. Here we present the first
experimental demonstration of STA for open quantum systems, using a
superconducting circuit QED system consisting of two coupled bosonic
oscillators and a transmon qubit. By applying a counterdiabatic driving pulse,
we reduce the adiabatic evolution time of a single lossy mode from 800 ns to
100 ns. In addition, we propose and implement an optimal control protocol to
achieve fast and qubit-unconditional equilibrium of multiple lossy modes. Our
results pave the way for accelerating dynamics of open quantum systems and have
potential applications in designing fast open-system protocols of physical and
interdisciplinary interest, such as accelerating bioengineering and chemical
reaction dynamics.
Related papers
- Quantum control by effective counterdiabatic driving [0.0]
Adiabatic dynamics is accelerated by introducing high-frequency modulations in the control Hamiltonian.
We present a number of applications for the high-fidelity realization of quantum state transfers and quantum gates.
arXiv Detail & Related papers (2024-02-07T15:14:41Z) - Dynamical invariant based shortcut to equilibration in open quantum systems [0.0]
We propose using the Lewis-Riesenfeld invariant to speed-up the equilibration of a driven open quantum system.
We show that our protocol can achieve a high-fidelity control in shorter timescales than simple non-optimized protocols.
arXiv Detail & Related papers (2024-01-22T02:32:27Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Fast adiabatic control of an optomechanical cavity [62.997667081978825]
We present a shortcut to adiabaticity for the control of an optomechanical cavity with two moving mirrors.
We find analytical expressions that give us effective trajectories which implement a STA for the quantum field inside the cavity.
arXiv Detail & Related papers (2022-11-09T15:32:28Z) - A shortcut to adiabaticity in a cavity with a moving mirror [58.720142291102135]
We describe for the first time how to implement shortcuts to adiabaticity in quantum field theory.
The shortcuts take place whenever there is no dynamical Casimir effect.
We obtain a fundamental limit for the efficiency of an Otto cycle with the quantum field as a working system.
arXiv Detail & Related papers (2022-02-01T20:40:57Z) - Numerical Gate Synthesis for Quantum Heuristics on Bosonic Quantum
Processors [1.195496689595016]
We study the framework in the context of qudits which are controllable electromagnetic modes of a superconducting cavity system.
We showcase control of single-qudit operations up to eight states, and two-qutrit operations, mapped respectively onto a single mode and two modes of the resonator.
arXiv Detail & Related papers (2022-01-19T18:55:13Z) - Shortcuts to adiabaticity for open quantum systems and a mixed-state
inverse engineering scheme [0.3058685580689604]
We present the shortcuts to adiabaticity (STAs) of open quantum systems.
We then apply the STAs to speed up the adiabatic steady process.
Our scheme drives open systems from a initial steady state to a target steady state by a controlled Liouvillian.
arXiv Detail & Related papers (2021-03-23T06:14:34Z) - Experimental implementation of precisely tailored light-matter
interaction via inverse engineering [5.131683740032632]
shortcuts to adiabaticity, originally proposed to speed up slow adiabatic process, have nowadays become versatile toolboxes.
Here, we implement fast and robust control for the state preparation and state engineering in a rare-earth ions system.
We demonstrate that our protocols surpass the conventional adiabatic schemes, by reducing the decoherence from the excited state decay and inhomogeneous broadening.
arXiv Detail & Related papers (2021-01-29T08:17:01Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates with Two Dark Paths in a Trapped Ion [41.36300605844117]
We show nonadiabatic holonomic single-qubit quantum gates on two dark paths in a trapped $171mathrmYb+$ ion based on four-level systems with resonant drives.
We find that nontrivial holonomic two-qubit quantum gates can also be realized within current experimental technologies.
arXiv Detail & Related papers (2021-01-19T06:57:50Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.