UNIK: A Unified Framework for Real-world Skeleton-based Action
Recognition
- URL: http://arxiv.org/abs/2107.08580v1
- Date: Mon, 19 Jul 2021 02:00:28 GMT
- Title: UNIK: A Unified Framework for Real-world Skeleton-based Action
Recognition
- Authors: Di Yang, Yaohui Wang, Antitza Dantcheva, Lorenzo Garattoni, Gianpiero
Francesca, Francois Bremond
- Abstract summary: We introduce UNIK, a novel skeleton-based action recognition method that is able to generalize across datasets.
To study the cross-domain generalizability of action recognition in real-world videos, we re-evaluate state-of-the-art approaches as well as the proposed UNIK.
Results show that the proposed UNIK, with pre-training on Posetics, generalizes well and outperforms state-of-the-art when transferred onto four target action classification datasets.
- Score: 11.81043814295441
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Action recognition based on skeleton data has recently witnessed increasing
attention and progress. State-of-the-art approaches adopting Graph
Convolutional networks (GCNs) can effectively extract features on human
skeletons relying on the pre-defined human topology. Despite associated
progress, GCN-based methods have difficulties to generalize across domains,
especially with different human topological structures. In this context, we
introduce UNIK, a novel skeleton-based action recognition method that is not
only effective to learn spatio-temporal features on human skeleton sequences
but also able to generalize across datasets. This is achieved by learning an
optimal dependency matrix from the uniform distribution based on a multi-head
attention mechanism. Subsequently, to study the cross-domain generalizability
of skeleton-based action recognition in real-world videos, we re-evaluate
state-of-the-art approaches as well as the proposed UNIK in light of a novel
Posetics dataset. This dataset is created from Kinetics-400 videos by
estimating, refining and filtering poses. We provide an analysis on how much
performance improves on smaller benchmark datasets after pre-training on
Posetics for the action classification task. Experimental results show that the
proposed UNIK, with pre-training on Posetics, generalizes well and outperforms
state-of-the-art when transferred onto four target action classification
datasets: Toyota Smarthome, Penn Action, NTU-RGB+D 60 and NTU-RGB+D 120.
Related papers
- Skeleton2vec: A Self-supervised Learning Framework with Contextualized
Target Representations for Skeleton Sequence [56.092059713922744]
We show that using high-level contextualized features as prediction targets can achieve superior performance.
Specifically, we propose Skeleton2vec, a simple and efficient self-supervised 3D action representation learning framework.
Our proposed Skeleton2vec outperforms previous methods and achieves state-of-the-art results.
arXiv Detail & Related papers (2024-01-01T12:08:35Z) - SkeletonMAE: Graph-based Masked Autoencoder for Skeleton Sequence
Pre-training [110.55093254677638]
We propose an efficient skeleton sequence learning framework, named Skeleton Sequence Learning (SSL)
In this paper, we build an asymmetric graph-based encoder-decoder pre-training architecture named SkeletonMAE.
Our SSL generalizes well across different datasets and outperforms the state-of-the-art self-supervised skeleton-based action recognition methods.
arXiv Detail & Related papers (2023-07-17T13:33:11Z) - Pose-Guided Graph Convolutional Networks for Skeleton-Based Action
Recognition [32.07659338674024]
Graph convolutional networks (GCNs) can model the human body skeletons as spatial and temporal graphs.
In this work, we propose pose-guided GCN (PG-GCN), a multi-modal framework for high-performance human action recognition.
The core idea of this module is to utilize a trainable graph to aggregate features from the skeleton stream with that of the pose stream, which leads to a network with more robust feature representation ability.
arXiv Detail & Related papers (2022-10-10T02:08:49Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - Skeletal Human Action Recognition using Hybrid Attention based Graph
Convolutional Network [3.261599248682793]
We propose a new adaptive spatial attention layer that extends local attention map to global based on relative distance and relative angle information.
We design a new initial graph adjacency matrix that connects head, hands and feet, which shows visible improvement in terms of action recognition accuracy.
The proposed model is evaluated on two large-scale and challenging datasets in the field of human activities in daily life.
arXiv Detail & Related papers (2022-07-12T12:22:21Z) - Joint-bone Fusion Graph Convolutional Network for Semi-supervised
Skeleton Action Recognition [65.78703941973183]
We propose a novel correlation-driven joint-bone fusion graph convolutional network (CD-JBF-GCN) as an encoder and use a pose prediction head as a decoder.
Specifically, the CD-JBF-GC can explore the motion transmission between the joint stream and the bone stream.
The pose prediction based auto-encoder in the self-supervised training stage allows the network to learn motion representation from unlabeled data.
arXiv Detail & Related papers (2022-02-08T16:03:15Z) - Revisiting Skeleton-based Action Recognition [107.08112310075114]
PoseC3D is a new approach to skeleton-based action recognition, which relies on a 3D heatmap instead stack a graph sequence as the base representation of human skeletons.
On four challenging datasets, PoseC3D consistently obtains superior performance, when used alone on skeletons and in combination with the RGB modality.
arXiv Detail & Related papers (2021-04-28T06:32:17Z) - Unifying Graph Embedding Features with Graph Convolutional Networks for
Skeleton-based Action Recognition [18.001693718043292]
We propose a novel framework, which unifies 15 graph embedding features into the graph convolutional network for human action recognition.
Our model is validated by three large-scale datasets, namely NTU-RGB+D, Kinetics and SYSU-3D.
arXiv Detail & Related papers (2020-03-06T02:31:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.