Facial Expressions Recognition with Convolutional Neural Networks
- URL: http://arxiv.org/abs/2107.08640v1
- Date: Mon, 19 Jul 2021 06:41:00 GMT
- Title: Facial Expressions Recognition with Convolutional Neural Networks
- Authors: Subodh Lonkar
- Abstract summary: We will be diving into implementing a system for recognition of facial expressions (FER) by leveraging neural networks.
We demonstrate a state-of-the-art single-network-accuracy of 70.10% on the FER2013 dataset without using any additional training data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Over the centuries, humans have developed and acquired a number of ways to
communicate. But hardly any of them can be as natural and instinctive as facial
expressions. On the other hand, neural networks have taken the world by storm.
And no surprises, that the area of Computer Vision and the problem of facial
expressions recognitions hasn't remained untouched. Although a wide range of
techniques have been applied, achieving extremely high accuracies and preparing
highly robust FER systems still remains a challenge due to heterogeneous
details in human faces. In this paper, we will be deep diving into implementing
a system for recognition of facial expressions (FER) by leveraging neural
networks, and more specifically, Convolutional Neural Networks (CNNs). We adopt
the fundamental concepts of deep learning and computer vision with various
architectures, fine-tune it's hyperparameters and experiment with various
optimization methods and demonstrate a state-of-the-art single-network-accuracy
of 70.10% on the FER2013 dataset without using any additional training data.
Related papers
- Face processing emerges from object-trained convolutional neural networks [3.0186977359501492]
Domain-general mechanism accounts posit that face processing can emerge from a neural network without specialized pre-training on faces.
We trained CNNs solely on objects and tested their ability to recognize and represent faces as well as objects that look like faces.
arXiv Detail & Related papers (2024-05-29T06:35:33Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - End2End Occluded Face Recognition by Masking Corrupted Features [82.27588990277192]
State-of-the-art general face recognition models do not generalize well to occluded face images.
This paper presents a novel face recognition method that is robust to occlusions based on a single end-to-end deep neural network.
Our approach, named FROM (Face Recognition with Occlusion Masks), learns to discover the corrupted features from the deep convolutional neural networks, and clean them by the dynamically learned masks.
arXiv Detail & Related papers (2021-08-21T09:08:41Z) - Facial expression and attributes recognition based on multi-task
learning of lightweight neural networks [9.162936410696409]
We examine the multi-task training of lightweight convolutional neural networks for face identification and classification of facial attributes.
It is shown that it is still necessary to fine-tune these networks in order to predict facial expressions.
Several models are presented based on MobileNet, EfficientNet and RexNet architectures.
arXiv Detail & Related papers (2021-03-31T14:21:04Z) - Continuous Emotion Recognition with Spatiotemporal Convolutional Neural
Networks [82.54695985117783]
We investigate the suitability of state-of-the-art deep learning architectures for continuous emotion recognition using long video sequences captured in-the-wild.
We have developed and evaluated convolutional recurrent neural networks combining 2D-CNNs and long short term-memory units, and inflated 3D-CNN models, which are built by inflating the weights of a pre-trained 2D-CNN model during fine-tuning.
arXiv Detail & Related papers (2020-11-18T13:42:05Z) - The FaceChannel: A Fast & Furious Deep Neural Network for Facial
Expression Recognition [71.24825724518847]
Current state-of-the-art models for automatic Facial Expression Recognition (FER) are based on very deep neural networks that are effective but rather expensive to train.
We formalize the FaceChannel, a light-weight neural network that has much fewer parameters than common deep neural networks.
We demonstrate how our model achieves a comparable, if not better, performance to the current state-of-the-art in FER.
arXiv Detail & Related papers (2020-09-15T09:25:37Z) - Deep learning approaches for neural decoding: from CNNs to LSTMs and
spikes to fMRI [2.0178765779788495]
Decoding behavior, perception, or cognitive state directly from neural signals has applications in brain-computer interface research.
In the last decade, deep learning has become the state-of-the-art method in many machine learning tasks.
Deep learning has been shown to be a useful tool for improving the accuracy and flexibility of neural decoding across a wide range of tasks.
arXiv Detail & Related papers (2020-05-19T18:10:35Z) - The FaceChannel: A Light-weight Deep Neural Network for Facial
Expression Recognition [71.24825724518847]
Current state-of-the-art models for automatic FER are based on very deep neural networks that are difficult to train.
We formalize the FaceChannel, a light-weight neural network that has much fewer parameters than common deep neural networks.
We demonstrate how the FaceChannel achieves a comparable, if not better, performance, as compared to the current state-of-the-art in FER.
arXiv Detail & Related papers (2020-04-17T12:03:14Z) - Salient Facial Features from Humans and Deep Neural Networks [2.5211876507510724]
We explore the features that are used by humans and by convolutional neural networks (ConvNets) to classify faces.
We use Guided Backpropagation (GB) to visualize the facial features that influence the output of a ConvNet the most when identifying specific individuals.
arXiv Detail & Related papers (2020-03-08T22:41:04Z) - TimeConvNets: A Deep Time Windowed Convolution Neural Network Design for
Real-time Video Facial Expression Recognition [93.0013343535411]
This study explores a novel deep time windowed convolutional neural network design (TimeConvNets) for the purpose of real-time video facial expression recognition.
We show that TimeConvNets can better capture the transient nuances of facial expressions and boost classification accuracy while maintaining a low inference time.
arXiv Detail & Related papers (2020-03-03T20:58:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.