The connection between time-local and time-nonlocal perturbation
expansions
- URL: http://arxiv.org/abs/2107.08949v1
- Date: Mon, 19 Jul 2021 15:05:29 GMT
- Title: The connection between time-local and time-nonlocal perturbation
expansions
- Authors: K. Nestmann, M. R. Wegewijs
- Abstract summary: We show that a series for the kernel $mathcalK$ to be translated directly into a corresponding series for the more complicated generator $mathcalG$.
We illustrate this for leading and next-to-leading order calculations of $mathcalK$ and $mathcalG$ for the single impurity Anderson model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There exist two canonical approaches to describe open quantum systems by a
time-evolution equation: the Nakajima-Zwanzig quantum master equation,
featuring a time-nonlocal memory kernel $\mathcal{K}$, and the
time-convolutionless equation with a time-local generator $\mathcal{G}$. These
key quantities have recently been shown to be connected by an exact fixed-point
relation [Phys. Rev. X 11, 021041 (2021)]. Here we show that this implies a
recursive relation between their perturbative expansions, allowing a series for
the kernel $\mathcal{K}$ to be translated directly into a corresponding series
for the more complicated generator $\mathcal{G}$. This leads to an elegant way
of computing the generator using well-developed, standard memory-kernel
techniques for strongly interacting open systems. Moreover, it allows for an
unbiased comparison of time-local and time-nonlocal approaches independent of
the particular technique chosen to calculate expansions of $\mathcal{K}$ and
$\mathcal{G}$ (Nakajima-Zwanzig projections, real-time diagrams, etc.). We
illustrate this for leading and next-to-leading order calculations of
$\mathcal{K}$ and $\mathcal{G}$ for the single impurity Anderson model using
both the bare expansion in the system-environment coupling and a more advanced
renormalized series. We compare the different expansions obtained, quantify the
legitimacy of the generated dynamics (complete positivity) and benchmark with
the exact result in the non-interacting limit.
Related papers
- Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.
This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.
Even with sublinear barriers, we use Feynman-Kac techniques to lift classical to quantum ones establishing tight lower bound $T_mathrmmix = 2Omega(nalpha)$.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Complexity is not Enough for Randomness [0.0]
We study the dynamical generation of randomness in Brownian systems as a function of the degree of locality of the Hamiltonian.
We find that the generation of randomness persists for exponentially long times in the system size, even for systems governed by highly non-local time-dependent Hamiltonians.
arXiv Detail & Related papers (2024-05-27T18:00:00Z) - Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Sachdev-Ye-Kitaev model on a noisy quantum computer [1.0377683220196874]
We study the SYK model -- an important toy model for quantum gravity on IBM's superconducting qubit quantum computers.
We compute return probability after time $t$ and out-of-time order correlators (OTOC) which is a standard observable of quantifying the chaotic nature of quantum systems.
arXiv Detail & Related papers (2023-11-29T19:00:00Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and
Costs [45.87981728307819]
The ability to compare and align related datasets living in heterogeneous spaces plays an increasingly important role in machine learning.
The Gromov-Wasserstein (GW) formalism can help tackle this problem.
arXiv Detail & Related papers (2021-06-02T12:50:56Z) - Quantum algorithm for time-dependent Hamiltonian simulation by
permutation expansion [6.338178373376447]
We present a quantum algorithm for the dynamical simulation of time-dependent Hamiltonians.
We demonstrate that the cost of the algorithm is independent of the Hamiltonian's frequencies.
arXiv Detail & Related papers (2021-03-29T05:02:02Z) - Quantum aspects of chaos and complexity from bouncing cosmology: A study
with two-mode single field squeezed state formalism [0.0]
This paper is devoted to the study of out-of-equilibrium aspects and quantum chaos appearing in the universe.
We use the $Out-of-Time Ordered correlation (OTOC)$ functions for probing the random behaviour of the universe both at early and the late times.
arXiv Detail & Related papers (2020-09-08T16:10:52Z) - Linear Time Sinkhorn Divergences using Positive Features [51.50788603386766]
Solving optimal transport with an entropic regularization requires computing a $ntimes n$ kernel matrix that is repeatedly applied to a vector.
We propose to use instead ground costs of the form $c(x,y)=-logdotpvarphi(x)varphi(y)$ where $varphi$ is a map from the ground space onto the positive orthant $RRr_+$, with $rll n$.
arXiv Detail & Related papers (2020-06-12T10:21:40Z) - How quantum evolution with memory is generated in a time-local way [0.0]
Two approaches to dynamics of open quantum systems are Nakajima-Zwanzig and time-convolutionless quantum master equation.
We show that the two are connected by a simple yet general fixed-point relation.
This allows one to extract nontrivial relations between the two.
arXiv Detail & Related papers (2020-02-17T20:10:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.