Know Thyself: Transferable Visuomotor Control Through Robot-Awareness
- URL: http://arxiv.org/abs/2107.09047v1
- Date: Mon, 19 Jul 2021 17:56:04 GMT
- Title: Know Thyself: Transferable Visuomotor Control Through Robot-Awareness
- Authors: Edward S. Hu, Kun Huang, Oleh Rybkin, Dinesh Jayaraman
- Abstract summary: Training visuomotor robot controllers from scratch on a new robot typically requires generating large amounts of robot-specific data.
We propose a "robot-aware" solution paradigm that exploits readily available robot "self-knowledge"
Our experiments on tabletop manipulation tasks in simulation and on real robots demonstrate that these plug-in improvements dramatically boost the transferability of visuomotor controllers.
- Score: 22.405839096833937
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training visuomotor robot controllers from scratch on a new robot typically
requires generating large amounts of robot-specific data. Could we leverage
data previously collected on another robot to reduce or even completely remove
this need for robot-specific data? We propose a "robot-aware" solution paradigm
that exploits readily available robot "self-knowledge" such as proprioception,
kinematics, and camera calibration to achieve this. First, we learn modular
dynamics models that pair a transferable, robot-agnostic world dynamics module
with a robot-specific, analytical robot dynamics module. Next, we set up visual
planning costs that draw a distinction between the robot self and the world.
Our experiments on tabletop manipulation tasks in simulation and on real robots
demonstrate that these plug-in improvements dramatically boost the
transferability of visuomotor controllers, even permitting zero-shot transfer
onto new robots for the very first time. Project website:
https://hueds.github.io/rac/
Related papers
- Know your limits! Optimize the robot's behavior through self-awareness [11.021217430606042]
Recent human-robot imitation algorithms focus on following a reference human motion with high precision.
We introduce a deep-learning model that anticipates the robot's performance when imitating a given reference.
Our Self-AWare model (SAW) ranks potential robot behaviors based on various criteria, such as fall likelihood, adherence to the reference motion, and smoothness.
arXiv Detail & Related papers (2024-09-16T14:14:58Z) - Unifying 3D Representation and Control of Diverse Robots with a Single Camera [48.279199537720714]
We introduce Neural Jacobian Fields, an architecture that autonomously learns to model and control robots from vision alone.
Our approach achieves accurate closed-loop control and recovers the causal dynamic structure of each robot.
arXiv Detail & Related papers (2024-07-11T17:55:49Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
Eye-in-hand cameras have shown promise in enabling greater sample efficiency and generalization in vision-based robotic manipulation.
Videos of humans performing tasks, on the other hand, are much cheaper to collect since they eliminate the need for expertise in robotic teleoperation.
In this work, we augment narrow robotic imitation datasets with broad unlabeled human video demonstrations to greatly enhance the generalization of eye-in-hand visuomotor policies.
arXiv Detail & Related papers (2023-07-12T07:04:53Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
We present a self-supervised sensorimotor pre-training approach for robotics.
Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens.
We find that sensorimotor pre-training consistently outperforms training from scratch, has favorable scaling properties, and enables transfer across different tasks, environments, and robots.
arXiv Detail & Related papers (2023-06-16T17:58:10Z) - Open-World Object Manipulation using Pre-trained Vision-Language Models [72.87306011500084]
For robots to follow instructions from people, they must be able to connect the rich semantic information in human vocabulary.
We develop a simple approach, which leverages a pre-trained vision-language model to extract object-identifying information.
In a variety of experiments on a real mobile manipulator, we find that MOO generalizes zero-shot to a wide range of novel object categories and environments.
arXiv Detail & Related papers (2023-03-02T01:55:10Z) - GenLoco: Generalized Locomotion Controllers for Quadrupedal Robots [87.32145104894754]
We introduce a framework for training generalized locomotion (GenLoco) controllers for quadrupedal robots.
Our framework synthesizes general-purpose locomotion controllers that can be deployed on a large variety of quadrupedal robots.
We show that our models acquire more general control strategies that can be directly transferred to novel simulated and real-world robots.
arXiv Detail & Related papers (2022-09-12T15:14:32Z) - Robotic Telekinesis: Learning a Robotic Hand Imitator by Watching Humans
on Youtube [24.530131506065164]
We build a system that enables any human to control a robot hand and arm, simply by demonstrating motions with their own hand.
The robot observes the human operator via a single RGB camera and imitates their actions in real-time.
We leverage this data to train a system that understands human hands and retargets a human video stream into a robot hand-arm trajectory that is smooth, swift, safe, and semantically similar to the guiding demonstration.
arXiv Detail & Related papers (2022-02-21T18:59:59Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
We consider the problem of transferring a policy across two different robots with significantly different parameters such as kinematics and morphology.
Existing approaches that train a new policy by matching the action or state transition distribution, including imitation learning methods, fail due to optimal action and/or state distribution being mismatched in different robots.
We propose a novel method named $REvolveR$ of using continuous evolutionary models for robotic policy transfer implemented in a physics simulator.
arXiv Detail & Related papers (2022-02-10T18:50:25Z) - Learning Locomotion Skills in Evolvable Robots [10.167123492952694]
We introduce a controller architecture and a generic learning method to allow a modular robot with an arbitrary shape to learn to walk towards a target and follow this target if it moves.
Our approach is validated on three robots, a spider, a gecko, and their offspring, in three real-world scenarios.
arXiv Detail & Related papers (2020-10-19T14:01:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.