Learning Linear Polytree Structural Equation Models
- URL: http://arxiv.org/abs/2107.10955v4
- Date: Tue, 14 May 2024 09:00:19 GMT
- Title: Learning Linear Polytree Structural Equation Models
- Authors: Xingmei Lou, Yu Hu, Xiaodong Li,
- Abstract summary: We are interested in the problem of learning the directed acyclic graph (DAG) when data are generated from a linear structural equation model (SEM)
We study sufficient conditions on the sample sizes for the well-known Chow-Liu algorithm to exactly recover both the skeleton and the equivalence class of the polytree.
We also consider an extension of group linear polytree models, in which each node represents a group of variables.
- Score: 4.833417613564028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We are interested in the problem of learning the directed acyclic graph (DAG) when data are generated from a linear structural equation model (SEM) and the causal structure can be characterized by a polytree. Under the Gaussian polytree models, we study sufficient conditions on the sample sizes for the well-known Chow-Liu algorithm to exactly recover both the skeleton and the equivalence class of the polytree, which is uniquely represented by a CPDAG. On the other hand, necessary conditions on the required sample sizes for both skeleton and CPDAG recovery are also derived in terms of information-theoretic lower bounds, which match the respective sufficient conditions and thereby give a sharp characterization of the difficulty of these tasks. We also consider the problem of inverse correlation matrix estimation under the linear polytree models, and establish the estimation error bound in terms of the dimension and the total number of v-structures. We also consider an extension of group linear polytree models, in which each node represents a group of variables. Our theoretical findings are illustrated by comprehensive numerical simulations, and experiments on benchmark data also demonstrate the robustness of polytree learning when the true graphical structures can only be approximated by polytrees.
Related papers
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - Learning Linear Gaussian Polytree Models with Interventions [0.0]
We present a consistent and highly scalable local approach to learn the causal structure of a linear Gaussian polytree.
Our methods first learn the skeleton of the polytree and then orient its edges.
Our simulation studies demonstrate that our approach is fast, has good accuracy in terms of structural Hamming distance, and handles problems with thousands of nodes.
arXiv Detail & Related papers (2023-11-08T12:29:19Z) - Learning bounded-degree polytrees with known skeleton [15.137372516678143]
We establish finite-sample guarantees for efficient proper learning of bounded-degree polytrees.
We provide an efficient algorithm which learns $d$-polytrees in time and sample complexity for any bounded $d$ when the underlying undirected graph is known.
arXiv Detail & Related papers (2023-10-10T06:03:51Z) - Topological Parallax: A Geometric Specification for Deep Perception
Models [0.778001492222129]
We introduce topological parallax as a theoretical and computational tool that compares a trained model to a reference dataset.
Our examples show that this geometric similarity between dataset and model is essential to trustworthy and perturbation.
This new concept will add value to the current debate regarding the unclear relationship between overfitting and generalization in applications of deep-learning.
arXiv Detail & Related papers (2023-06-20T18:45:24Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
In this paper we offer a new perspective on the well established agglomerative clustering algorithm, focusing on recovery of hierarchical structure.
We recommend a simple variant of the standard algorithm, in which clusters are merged by maximum average dot product and not, for example, by minimum distance or within-cluster variance.
We demonstrate that the tree output by this algorithm provides a bona fide estimate of generative hierarchical structure in data, under a generic probabilistic graphical model.
arXiv Detail & Related papers (2023-05-24T11:05:12Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Learning Linear Non-Gaussian Polytree Models [2.4493299476776778]
We propose new algorithms to efficiently learn graphs that are polytrees.
Our approach combines the Chow--Liu algorithm, which first learns the undirected tree structure, with novel schemes to orient the edges.
arXiv Detail & Related papers (2022-08-13T18:20:10Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
We develop effective Monte Carlo algorithms to approximate the optimal bounds from an arbitrary combination of observational and experimental data.
Our algorithms are validated extensively on synthetic and real-world datasets.
arXiv Detail & Related papers (2021-10-12T02:21:30Z) - Regularization of Mixture Models for Robust Principal Graph Learning [0.0]
A regularized version of Mixture Models is proposed to learn a principal graph from a distribution of $D$-dimensional data points.
Parameters of the model are iteratively estimated through an Expectation-Maximization procedure.
arXiv Detail & Related papers (2021-06-16T18:00:02Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - SGA: A Robust Algorithm for Partial Recovery of Tree-Structured
Graphical Models with Noisy Samples [75.32013242448151]
We consider learning Ising tree models when the observations from the nodes are corrupted by independent but non-identically distributed noise.
Katiyar et al. (2020) showed that although the exact tree structure cannot be recovered, one can recover a partial tree structure.
We propose Symmetrized Geometric Averaging (SGA), a more statistically robust algorithm for partial tree recovery.
arXiv Detail & Related papers (2021-01-22T01:57:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.