Improving ClusterGAN Using Self-Augmented Information Maximization of
Disentangling Latent Spaces
- URL: http://arxiv.org/abs/2107.12706v2
- Date: Mon, 1 May 2023 05:45:44 GMT
- Title: Improving ClusterGAN Using Self-Augmented Information Maximization of
Disentangling Latent Spaces
- Authors: Tanmoy Dam, Sreenatha G. Anavatti, Hussein A. Abbass
- Abstract summary: We propose self-augmentation information improved ClusterGAN (SIMI-ClusterGAN) to learn the distinctive priors from the data directly.
The proposed method has been validated using seven benchmark data sets and has shown improved performance over state-of-the art methods.
- Score: 8.88634093297796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Since their introduction in the last few years, conditional generative models
have seen remarkable achievements. However, they often need the use of large
amounts of labelled information. By using unsupervised conditional generation
in conjunction with a clustering inference network, ClusterGAN has recently
been able to achieve impressive clustering results. Since the real conditional
distribution of data is ignored, the clustering inference network can only
achieve inferior clustering performance by considering only uniform prior based
generative samples. However, the true distribution is not necessarily balanced.
Consequently, ClusterGAN fails to produce all modes, which results in
sub-optimal clustering inference network performance. So, it is important to
learn the prior, which tries to match the real distribution in an unsupervised
way. In this paper, we propose self-augmentation information maximization
improved ClusterGAN (SIMI-ClusterGAN) to learn the distinctive priors from the
data directly. The proposed SIMI-ClusterGAN consists of four deep neural
networks: self-augmentation prior network, generator, discriminator and
clustering inference network. The proposed method has been validated using
seven benchmark data sets and has shown improved performance over state-of-the
art methods. To demonstrate the superiority of SIMI-ClusterGAN performance on
imbalanced dataset, we have discussed two imbalanced conditions on MNIST
datasets with one-class imbalance and three classes imbalanced cases. The
results highlight the advantages of SIMI-ClusterGAN.
Related papers
- Adaptive Self-supervised Robust Clustering for Unstructured Data with Unknown Cluster Number [12.926206811876174]
We introduce a novel self-supervised deep clustering approach tailored for unstructured data, termed Adaptive Self-supervised Robust Clustering (ASRC)
ASRC adaptively learns the graph structure and edge weights to capture both local and global structural information.
ASRC even outperforms methods that rely on prior knowledge of the number of clusters, highlighting its effectiveness in addressing the challenges of clustering unstructured data.
arXiv Detail & Related papers (2024-07-29T15:51:09Z) - Stable Cluster Discrimination for Deep Clustering [7.175082696240088]
Deep clustering can optimize representations of instances (i.e., representation learning) and explore the inherent data distribution.
The coupled objective implies a trivial solution that all instances collapse to the uniform features.
In this work, we first show that the prevalent discrimination task in supervised learning is unstable for one-stage clustering.
A novel stable cluster discrimination (SeCu) task is proposed and a new hardness-aware clustering criterion can be obtained accordingly.
arXiv Detail & Related papers (2023-11-24T06:43:26Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - CADIS: Handling Cluster-skewed Non-IID Data in Federated Learning with
Clustered Aggregation and Knowledge DIStilled Regularization [3.3711670942444014]
Federated learning enables edge devices to train a global model collaboratively without exposing their data.
We tackle a new type of Non-IID data, called cluster-skewed non-IID, discovered in actual data sets.
We propose an aggregation scheme that guarantees equality between clusters.
arXiv Detail & Related papers (2023-02-21T02:53:37Z) - Cluster-guided Contrastive Graph Clustering Network [53.16233290797777]
We propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC)
We construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks.
To construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples.
arXiv Detail & Related papers (2023-01-03T13:42:38Z) - Deep Attention-guided Graph Clustering with Dual Self-supervision [49.040136530379094]
We propose a novel method, namely deep attention-guided graph clustering with dual self-supervision (DAGC)
We develop a dual self-supervision solution consisting of a soft self-supervision strategy with a triplet Kullback-Leibler divergence loss and a hard self-supervision strategy with a pseudo supervision loss.
Our method consistently outperforms state-of-the-art methods on six benchmark datasets.
arXiv Detail & Related papers (2021-11-10T06:53:03Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
We propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC)
In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, are designed for node representation learning.
For the OOS nodes, SCAGC can directly calculate their clustering labels.
arXiv Detail & Related papers (2021-10-15T03:25:28Z) - Learning Statistical Representation with Joint Deep Embedded Clustering [2.1267423178232407]
StatDEC is an unsupervised framework for joint statistical representation learning and clustering.
Our experiments show that using these representations, one can considerably improve results on imbalanced image clustering across a variety of image datasets.
arXiv Detail & Related papers (2021-09-11T09:26:52Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Unsupervised Visual Representation Learning by Online Constrained
K-Means [44.38989920488318]
Cluster discrimination is an effective pretext task for unsupervised representation learning.
We propose a novel clustering-based pretext task with online textbfConstrained textbfK-mtextbfeans (textbfCoKe)
Our online assignment method has a theoretical guarantee to approach the global optimum.
arXiv Detail & Related papers (2021-05-24T20:38:32Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.