Demand Forecasting in Smart Grid Using Long Short-Term Memory
- URL: http://arxiv.org/abs/2107.13653v1
- Date: Wed, 28 Jul 2021 21:45:54 GMT
- Title: Demand Forecasting in Smart Grid Using Long Short-Term Memory
- Authors: Koushik Roy, Abtahi Ishmam, Kazi Abu Taher
- Abstract summary: Long Short-Term Memory (LSTM) shows promising results in predicting time series data.
In this paper, an LSTM based model using neural network architecture is proposed to forecast power demand.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Demand forecasting in power sector has become an important part of modern
demand management and response systems with the rise of smart metering enabled
grids. Long Short-Term Memory (LSTM) shows promising results in predicting time
series data which can also be applied to power load demand in smart grids. In
this paper, an LSTM based model using neural network architecture is proposed
to forecast power demand. The model is trained with hourly energy and power
usage data of four years from a smart grid. After training and prediction, the
accuracy of the model is compared against the traditional statistical time
series analysis algorithms, such as Auto-Regressive (AR), to determine the
efficiency. The mean absolute percentile error is found to be 1.22 in the
proposed LSTM model, which is the lowest among the other models. From the
findings, it is clear that the inclusion of neural network in predicting power
demand reduces the error of prediction significantly. Thus, the application of
LSTM can enable a more efficient demand response system.
Related papers
- Short-Term Electricity Demand Forecasting of Dhaka City Using CNN with Stacked BiLSTM [0.471858286267785]
This paper proposes a hybrid model of Convolutional Neural Network (CNN) and stacked Bidirectional Long-short Term Memory (BiLSTM) architecture to perform an accurate short-term forecast of the electricity demand of Dhaka city.
The proposed approach produced the best prediction results in comparison to the other benchmark models used in the study, with MAPE 1.64%, MSE 0.015, RMSE 0.122 and MAE 0.092.
arXiv Detail & Related papers (2024-06-10T09:02:07Z) - Secure short-term load forecasting for smart grids with
transformer-based federated learning [0.0]
Electricity load forecasting is an essential task within smart grids to assist demand and supply balance.
Fine-grained load profiles can expose users' electricity consumption behaviors, which raises privacy and security concerns.
This paper presents a novel transformer-based deep learning approach with federated learning for short-term electricity load prediction.
arXiv Detail & Related papers (2023-10-26T15:27:55Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Short-term Prediction of Household Electricity Consumption Using
Customized LSTM and GRU Models [5.8010446129208155]
This paper proposes a customized GRU (Gated Recurrent Unit) and Long Short-Term Memory (LSTM) architecture to address this challenging problem.
The electricity consumption datasets were obtained from individual household smart meters.
arXiv Detail & Related papers (2022-12-16T23:42:57Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
This paper proposes a time series prediction framework using aggregated traffic signal and loop detector data.
We utilize state-of-the-art machine learning models to predict future signal phases' duration.
Results based on an empirical data set from a fully-actuated signal control system in Zurich, Switzerland, show that machine learning models outperform conventional prediction methods.
arXiv Detail & Related papers (2022-08-24T07:50:43Z) - DNNAbacus: Toward Accurate Computational Cost Prediction for Deep Neural
Networks [0.9896984829010892]
This paper investigates the computational resource demands of 29 classical deep neural networks and builds accurate models for predicting computational costs.
We propose a lightweight prediction approach DNNAbacus with a novel network structural matrix for network representation.
Our experimental results show that the mean relative error (MRE) is 0.9% with respect to time and 2.8% with respect to memory for 29 classic models, which is much lower than the state-of-the-art works.
arXiv Detail & Related papers (2022-05-24T14:21:27Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Online learning of windmill time series using Long Short-term Cognitive
Networks [58.675240242609064]
The amount of data generated on windmill farms makes online learning the most viable strategy to follow.
We use Long Short-term Cognitive Networks (LSTCNs) to forecast windmill time series in online settings.
Our approach reported the lowest forecasting errors with respect to a simple RNN, a Long Short-term Memory, a Gated Recurrent Unit, and a Hidden Markov Model.
arXiv Detail & Related papers (2021-07-01T13:13:24Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - N-BEATS neural network for mid-term electricity load forecasting [8.430502131775722]
We show that our proposed deep neural network modeling approach is effective at solving the mid-term electricity load forecasting problem.
It is simple to implement and train, it does not require signal preprocessing, and it is equipped with a forecast bias reduction mechanism.
The empirical study shows that proposed neural network clearly outperforms all competitors in terms of both accuracy and forecast bias.
arXiv Detail & Related papers (2020-09-24T21:48:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.