Quantum Arithmetic for Directly Embedded Arrays
- URL: http://arxiv.org/abs/2107.13872v1
- Date: Thu, 29 Jul 2021 10:14:17 GMT
- Title: Quantum Arithmetic for Directly Embedded Arrays
- Authors: Alberto Manzano, Daniele Musso, \'Alvaro Leitao, Andr\'es G\'omez,
Carlos V\'azquez, Gustavo Ord\'o\~nez and Mar\'ia Rodr\'iguez-Nogueiras
- Abstract summary: We describe a general-purpose framework to design quantum algorithms relying upon an efficient handling of arrays.
The corner-stone of the framework is the direct embedding of information into quantum amplitudes.
We give explicit examples regarding the manipulation of generic oracles.
- Score: 1.8472148461613158
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe a general-purpose framework to design quantum algorithms relying
upon an efficient handling of arrays. The corner-stone of the framework is the
direct embedding of information into quantum amplitudes, thus avoiding the need
to deal with square roots or encode the information in registers. We discuss
the entire pipeline, from data loading to information extraction. Particular
attention is devoted to the definition of an efficient tool-kit of quantum
arithmetic operations on arrays. We comment on strong and weak points of the
proposed manipulations, especially in relation to an effective exploitation of
quantum parallelism. Eventually, we give explicit examples regarding the
manipulation of generic oracles.
Related papers
- Quantum-Efficient Convolution through Sparse Matrix Encoding and Low-Depth Inner Product Circuits [0.0]
We present a resource-efficient quantum algorithm that reformulates the convolution product as a structured matrix multiplication.<n>We construct a quantum framework wherein sparse input patches are prepared using optimized key-value QRAM state encoding.<n>Our architecture supports batched convolution across multiple filters using a generalized SWAP circuit.
arXiv Detail & Related papers (2025-07-25T20:08:12Z) - An Efficient Quantum Classifier Based on Hamiltonian Representations [50.467930253994155]
Quantum machine learning (QML) is a discipline that seeks to transfer the advantages of quantum computing to data-driven tasks.
We propose an efficient approach that circumvents the costs associated with data encoding by mapping inputs to a finite set of Pauli strings.
We evaluate our approach on text and image classification tasks, against well-established classical and quantum models.
arXiv Detail & Related papers (2025-04-13T11:49:53Z) - Realization of quantum algorithms with qudits [0.7892577704654171]
We review several ideas indicating how multilevel quantum systems, also known as qudits, can be used for efficient realization of quantum algorithms.
We focus on techniques of leveraging qudits for simplifying decomposition of multiqubit gates, and for compressing quantum information by encoding multiple qubits in a single qudit.
These theoretical schemes can be implemented with quantum computing platforms of various nature, such as trapped ions, neutral atoms, superconducting junctions, and quantum light.
arXiv Detail & Related papers (2023-11-20T18:34:19Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Qubit-Efficient Randomized Quantum Algorithms for Linear Algebra [3.4137115855910767]
We propose a class of randomized quantum algorithms for the task of sampling from matrix functions.
Our use of qubits is purely algorithmic, and no additional qubits are required for quantum data structures.
arXiv Detail & Related papers (2023-02-03T17:22:49Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Efficient algorithms for quantum information bottleneck [64.67104066707309]
We propose a new and general algorithm for the quantum generalisation of information bottleneck.
Our algorithm excels in the speed and the definiteness of convergence compared with prior results.
Notably, we discover that a quantum system can achieve strictly better performance than a classical system of the same size regarding quantum information bottleneck.
arXiv Detail & Related papers (2022-08-22T14:20:05Z) - Quantum implementation of circulant matrices and its use in quantum
string processing [0.0]
In this paper, we show that suffixes used in those data structures can be obtained by using circulant matrices as a quantum operator.
If the strings are given as quantum states, using the presented circuit implementation one can do string processing efficiently on quantum computers.
arXiv Detail & Related papers (2022-06-19T09:24:11Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Resource Optimisation of Coherently Controlled Quantum Computations with
the PBS-calculus [55.2480439325792]
Coherent control of quantum computations can be used to improve some quantum protocols and algorithms.
We refine the PBS-calculus, a graphical language for coherent control inspired by quantum optics.
arXiv Detail & Related papers (2022-02-10T18:59:52Z) - Quantum Search for Scaled Hash Function Preimages [1.3299507495084417]
We present the implementation of Grover's algorithm in a quantum simulator to perform a quantum search for preimages of two scaled hash functions.
We show that strategies that suggest a shortcut based on sampling the quantum register after a few steps of Grover's algorithm can only provide some marginal practical advantage in terms of error mitigation.
arXiv Detail & Related papers (2020-09-01T18:00:02Z) - Efficient Quantum Circuits for Accurate State Preparation of Smooth,
Differentiable Functions [0.8315657895474382]
We show that there exist families of quantum states that can be prepared to high precision with circuits of linear size and depth.
We further develop an algorithm that requires only linear classical time to generate accurate linear-depth circuits.
arXiv Detail & Related papers (2020-05-09T02:31:44Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.