From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object
Detection
- URL: http://arxiv.org/abs/2107.14391v1
- Date: Fri, 30 Jul 2021 02:00:06 GMT
- Title: From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object
Detection
- Authors: Jiajun Deng, Wengang Zhou, Yanyong Zhang, and Houqiang Li
- Abstract summary: We propose a new architecture, namely Hallucinated Hollow-3D R-CNN, to address the problem of 3D object detection.
In our approach, we first extract the multi-view features by sequentially projecting the point clouds into the perspective view and the bird-eye view.
The 3D objects are detected via a box refinement module with a novel Hierarchical Voxel RoI Pooling operation.
- Score: 101.20784125067559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As an emerging data modal with precise distance sensing, LiDAR point clouds
have been placed great expectations on 3D scene understanding. However, point
clouds are always sparsely distributed in the 3D space, and with unstructured
storage, which makes it difficult to represent them for effective 3D object
detection. To this end, in this work, we regard point clouds as hollow-3D data
and propose a new architecture, namely Hallucinated Hollow-3D R-CNN
($\text{H}^2$3D R-CNN), to address the problem of 3D object detection. In our
approach, we first extract the multi-view features by sequentially projecting
the point clouds into the perspective view and the bird-eye view. Then, we
hallucinate the 3D representation by a novel bilaterally guided multi-view
fusion block. Finally, the 3D objects are detected via a box refinement module
with a novel Hierarchical Voxel RoI Pooling operation. The proposed
$\text{H}^2$3D R-CNN provides a new angle to take full advantage of
complementary information in the perspective view and the bird-eye view with an
efficient framework. We evaluate our approach on the public KITTI Dataset and
Waymo Open Dataset. Extensive experiments demonstrate the superiority of our
method over the state-of-the-art algorithms with respect to both effectiveness
and efficiency. The code will be made available at
\url{https://github.com/djiajunustc/H-23D_R-CNN}.
Related papers
- SOGDet: Semantic-Occupancy Guided Multi-view 3D Object Detection [19.75965521357068]
We propose a novel approach called SOGDet (Semantic-Occupancy Guided Multi-view 3D Object Detection) to improve the accuracy of 3D object detection.
Our results show that SOGDet consistently enhance the performance of three baseline methods in terms of nuScenes Detection Score (NDS) and mean Average Precision (mAP)
This indicates that the combination of 3D object detection and 3D semantic occupancy leads to a more comprehensive perception of the 3D environment, thereby aiding build more robust autonomous driving systems.
arXiv Detail & Related papers (2023-08-26T07:38:21Z) - SurroundOcc: Multi-Camera 3D Occupancy Prediction for Autonomous Driving [98.74706005223685]
3D scene understanding plays a vital role in vision-based autonomous driving.
We propose a SurroundOcc method to predict the 3D occupancy with multi-camera images.
arXiv Detail & Related papers (2023-03-16T17:59:08Z) - Sparse2Dense: Learning to Densify 3D Features for 3D Object Detection [85.08249413137558]
LiDAR-produced point clouds are the major source for most state-of-the-art 3D object detectors.
Small, distant, and incomplete objects with sparse or few points are often hard to detect.
We present Sparse2Dense, a new framework to efficiently boost 3D detection performance by learning to densify point clouds in latent space.
arXiv Detail & Related papers (2022-11-23T16:01:06Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
We propose Contextualized Multi-Stage Refinement for 3D Object Detection (CMR3D) framework.
Our framework takes a 3D scene as input and strives to explicitly integrate useful contextual information of the scene.
In addition to 3D object detection, we investigate the effectiveness of our framework for the problem of 3D object counting.
arXiv Detail & Related papers (2022-09-13T05:26:09Z) - Voint Cloud: Multi-View Point Cloud Representation for 3D Understanding [80.04281842702294]
We introduce the concept of the multi-view point cloud (Voint cloud) representing each 3D point as a set of features extracted from several view-points.
This novel 3D Voint cloud representation combines the compactness of 3D point cloud representation with the natural view-awareness of multi-view representation.
We deploy a Voint neural network (VointNet) with a theoretically established functional form to learn representations in the Voint space.
arXiv Detail & Related papers (2021-11-30T13:08:19Z) - CoCoNets: Continuous Contrastive 3D Scene Representations [21.906643302668716]
This paper explores self-supervised learning of amodal 3D feature representations from RGB and RGB-D posed images and videos.
We show the resulting 3D visual feature representations effectively scale across objects and scenes, imagine information occluded or missing from the input viewpoints, track objects over time, align semantically related objects in 3D, and improve 3D object detection.
arXiv Detail & Related papers (2021-04-08T15:50:47Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
Estimating 3D orientation and translation of objects is essential for infrastructure-less autonomous navigation and driving.
We propose a novel 3D object detection method, named SMOKE, that combines a single keypoint estimate with regressed 3D variables.
Despite of its structural simplicity, our proposed SMOKE network outperforms all existing monocular 3D detection methods on the KITTI dataset.
arXiv Detail & Related papers (2020-02-24T08:15:36Z) - RTM3D: Real-time Monocular 3D Detection from Object Keypoints for
Autonomous Driving [26.216609821525676]
Most successful 3D detectors take the projection constraint from the 3D bounding box to the 2D box as an important component.
Our method predicts the nine perspective keypoints of a 3D bounding box in image space, and then utilize the geometric relationship of 3D and 2D perspectives to recover the dimension, location, and orientation in 3D space.
Our method is the first real-time system for monocular image 3D detection while achieves state-of-the-art performance on the KITTI benchmark.
arXiv Detail & Related papers (2020-01-10T08:29:20Z) - PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection [76.30585706811993]
We present a novel and high-performance 3D object detection framework, named PointVoxel-RCNN (PV-RCNN)
Our proposed method deeply integrates both 3D voxel Convolutional Neural Network (CNN) and PointNet-based set abstraction.
It takes advantages of efficient learning and high-quality proposals of the 3D voxel CNN and the flexible receptive fields of the PointNet-based networks.
arXiv Detail & Related papers (2019-12-31T06:34:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.