Efficient Multidimensional Functional Data Analysis Using Marginal
Product Basis Systems
- URL: http://arxiv.org/abs/2107.14728v4
- Date: Thu, 14 Sep 2023 20:55:54 GMT
- Title: Efficient Multidimensional Functional Data Analysis Using Marginal
Product Basis Systems
- Authors: William Consagra, Arun Venkataraman, Xing Qiu
- Abstract summary: We propose a framework for learning continuous representations from a sample of multidimensional functional data.
We show that the resulting estimation problem can be solved efficiently by the tensor decomposition.
We conclude with a real data application in neuroimaging.
- Score: 2.4554686192257424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many modern datasets, from areas such as neuroimaging and geostatistics, come
in the form of a random sample of tensor-valued data which can be understood as
noisy observations of a smooth multidimensional random function. Most of the
traditional techniques from functional data analysis are plagued by the curse
of dimensionality and quickly become intractable as the dimension of the domain
increases. In this paper, we propose a framework for learning continuous
representations from a sample of multidimensional functional data that is
immune to several manifestations of the curse. These representations are
constructed using a set of separable basis functions that are defined to be
optimally adapted to the data. We show that the resulting estimation problem
can be solved efficiently by the tensor decomposition of a carefully defined
reduction transformation of the observed data. Roughness-based regularization
is incorporated using a class of differential operator-based penalties.
Relevant theoretical properties are also established. The advantages of our
method over competing methods are demonstrated in a simulation study. We
conclude with a real data application in neuroimaging.
Related papers
- Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
We propose alternatives to the commonly used finite differences-based method.
We evaluate these methods in terms of applicability to problems, similar to the real ones, and their ability to ensure the convergence of equation discovery algorithms.
arXiv Detail & Related papers (2023-11-09T23:32:06Z) - Directed Cyclic Graph for Causal Discovery from Multivariate Functional
Data [15.26007975367927]
We introduce a functional linear structural equation model for causal structure learning.
To enhance interpretability, our model involves a low-dimensional causal embedded space.
We prove that the proposed model is causally identifiable under standard assumptions.
arXiv Detail & Related papers (2023-10-31T15:19:24Z) - Manifold Learning with Sparse Regularised Optimal Transport [0.17205106391379024]
Real-world datasets are subject to noisy observations and sampling, so that distilling information about the underlying manifold is a major challenge.
We propose a method for manifold learning that utilises a symmetric version of optimal transport with a quadratic regularisation.
We prove that the resulting kernel is consistent with a Laplace-type operator in the continuous limit, establish robustness to heteroskedastic noise and exhibit these results in simulations.
arXiv Detail & Related papers (2023-07-19T08:05:46Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
This paper develops a new iterative learning algorithm for complex turbulent systems with partial observations.
It alternates between identifying model structures, recovering unobserved variables, and estimating parameters.
Numerical experiments show that the new algorithm succeeds in identifying the model structure and providing suitable parameterizations for many complex nonlinear systems.
arXiv Detail & Related papers (2022-08-19T00:35:03Z) - Functional Nonlinear Learning [0.0]
We propose a functional nonlinear learning (FunNoL) method to represent multivariate functional data in a lower-dimensional feature space.
We show that FunNoL provides satisfactory curve classification and reconstruction regardless of data sparsity.
arXiv Detail & Related papers (2022-06-22T23:47:45Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Measuring dissimilarity with diffeomorphism invariance [94.02751799024684]
We introduce DID, a pairwise dissimilarity measure applicable to a wide range of data spaces.
We prove that DID enjoys properties which make it relevant for theoretical study and practical use.
arXiv Detail & Related papers (2022-02-11T13:51:30Z) - Joint Dimensionality Reduction for Separable Embedding Estimation [43.22422640265388]
Low-dimensional embeddings for data from disparate sources play critical roles in machine learning, multimedia information retrieval, and bioinformatics.
We propose a supervised dimensionality reduction method that learns linear embeddings jointly for two feature vectors representing data of different modalities or data from distinct types of entities.
Our approach compares favorably against other dimensionality reduction methods, and against a state-of-the-art method of bilinear regression for predicting gene-disease associations.
arXiv Detail & Related papers (2021-01-14T08:48:37Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.