Transfer Learning for Mining Feature Requests and Bug Reports from
Tweets and App Store Reviews
- URL: http://arxiv.org/abs/2108.00663v1
- Date: Mon, 2 Aug 2021 06:51:13 GMT
- Title: Transfer Learning for Mining Feature Requests and Bug Reports from
Tweets and App Store Reviews
- Authors: Pablo Restrepo Henao, Jannik Fischbach, Dominik Spies, Julian
Frattini, and Andreas Vogelsang
- Abstract summary: Existing approaches fail to detect feature requests and bug reports with high Recall and acceptable Precision.
We train both monolingual and multilingual BERT models and compare the performance with state-of-the-art methods.
- Score: 4.446419663487345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying feature requests and bug reports in user comments holds great
potential for development teams. However, automated mining of RE-related
information from social media and app stores is challenging since (1) about 70%
of user comments contain noisy, irrelevant information, (2) the amount of user
comments grows daily making manual analysis unfeasible, and (3) user comments
are written in different languages. Existing approaches build on traditional
machine learning (ML) and deep learning (DL), but fail to detect feature
requests and bug reports with high Recall and acceptable Precision which is
necessary for this task. In this paper, we investigate the potential of
transfer learning (TL) for the classification of user comments. Specifically,
we train both monolingual and multilingual BERT models and compare the
performance with state-of-the-art methods. We found that monolingual BERT
models outperform existing baseline methods in the classification of English
App Reviews as well as English and Italian Tweets. However, we also observed
that the application of heavyweight TL models does not necessarily lead to
better performance. In fact, our multilingual BERT models perform worse than
traditional ML methods.
Related papers
- Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.
But can these models relate corresponding concepts across languages, effectively being crosslingual?
This study evaluates six state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - Leveraging Language Identification to Enhance Code-Mixed Text
Classification [0.7340017786387767]
Existing deep-learning models do not take advantage of the implicit language information in code-mixed text.
Our study aims to improve BERT-based models performance on low-resource Code-Mixed Hindi-English datasets.
arXiv Detail & Related papers (2023-06-08T06:43:10Z) - Evaluating the Effectiveness of Pre-trained Language Models in
Predicting the Helpfulness of Online Product Reviews [0.21485350418225244]
We compare the use of RoBERTa and XLM-R language models to predict the helpfulness of online product reviews.
We employ the Amazon review dataset for our experiments.
arXiv Detail & Related papers (2023-02-19T18:22:59Z) - Cross-lingual Transfer Learning for Check-worthy Claim Identification
over Twitter [7.601937548486356]
Misinformation spread over social media has become an undeniable infodemic.
We present a systematic study of six approaches for cross-lingual check-worthiness estimation across pairs of five diverse languages with the help of Multilingual BERT (mBERT) model.
Our results show that for some language pairs, zero-shot cross-lingual transfer is possible and can perform as good as monolingual models that are trained on the target language.
arXiv Detail & Related papers (2022-11-09T18:18:53Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
Massively multilingual language models such as multilingual BERT (mBERT) and XLM-R offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks.
Due to their limited capacity and large differences in pretraining data, there is a profound performance gap between resource-rich and resource-poor target languages.
We propose novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts.
arXiv Detail & Related papers (2020-12-31T11:37:28Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
Cross-lingual Machine Reading (CLMRC) remains a challenging problem due to the lack of large-scale datasets in low-source languages.
We propose a novel augmentation approach named Language Branch Machine Reading (LBMRC)
LBMRC trains multiple machine reading comprehension (MRC) models proficient in individual language.
We devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages.
arXiv Detail & Related papers (2020-10-27T13:12:17Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
Spelling normalization for low resource languages is a challenging task because the patterns are hard to predict.
This work shows a comparison of a neural model and character language models with varying amounts on target language data.
Our usage scenario is interactive correction with nearly zero amounts of training examples, improving models as more data is collected.
arXiv Detail & Related papers (2020-10-20T17:31:07Z) - X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained
Language Models [103.75890012041366]
Language models (LMs) have proven surprisingly successful at capturing factual knowledge.
However, studies on LMs' factual representation ability have almost invariably been performed on English.
We create a benchmark of cloze-style probes for 23 typologically diverse languages.
arXiv Detail & Related papers (2020-10-13T05:29:56Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
We propose an enhanced fusion method that takes cross-lingual data as input for XLM finetuning.
During inference, the model makes predictions based on the text input in the target language and its translation in the source language.
To tackle this issue, we propose an additional KL-divergence self-teaching loss for model training, based on auto-generated soft pseudo-labels for translated text in the target language.
arXiv Detail & Related papers (2020-09-10T22:42:15Z) - Mono vs Multilingual Transformer-based Models: a Comparison across
Several Language Tasks [1.2691047660244335]
BERT (Bidirectional Representations from Transformers) and ALBERT (A Lite BERT) are methods for pre-training language models.
We make available our trained BERT and Albert model for Portuguese.
arXiv Detail & Related papers (2020-07-19T19:13:20Z) - WikiBERT models: deep transfer learning for many languages [1.3455090151301572]
We introduce a simple, fully automated pipeline for creating languagespecific BERT models from Wikipedia data.
We assess the merits of these models using the state-of-the-art UDify on Universal Dependencies data.
arXiv Detail & Related papers (2020-06-02T11:57:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.