Validation of RELU nets with tropical polyhedra
- URL: http://arxiv.org/abs/2108.00893v1
- Date: Fri, 30 Jul 2021 06:22:59 GMT
- Title: Validation of RELU nets with tropical polyhedra
- Authors: Eric Goubault, S\'ebastien Palumby, Sylvie Putot, Louis Rustenholtz,
Sriram Sankaranarayanan
- Abstract summary: We present an approach that abstracts ReLU feedforward neural networks using tropical polyhedra.
We show how the connection between ReLU networks and tropical rational functions can provide approaches for range analysis of ReLU neural networks.
- Score: 7.087237546722617
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper studies the problem of range analysis for feedforward neural
networks, which is a basic primitive for applications such as robustness of
neural networks, compliance to specifications and reachability analysis of
neural-network feedback systems. Our approach focuses on ReLU (rectified linear
unit) feedforward neural nets that present specific difficulties: approaches
that exploit derivatives do not apply in general, the number of patterns of
neuron activations can be quite large even for small networks, and convex
approximations are generally too coarse. In this paper, we employ set-based
methods and abstract interpretation that have been very successful in coping
with similar difficulties in classical program verification. We present an
approach that abstracts ReLU feedforward neural networks using tropical
polyhedra. We show that tropical polyhedra can efficiently abstract ReLU
activation function, while being able to control the loss of precision due to
linear computations. We show how the connection between ReLU networks and
tropical rational functions can provide approaches for range analysis of ReLU
neural networks.
Related papers
- The sampling complexity of learning invertible residual neural networks [9.614718680817269]
It has been shown that determining a feedforward ReLU neural network to within high uniform accuracy from point samples suffers from the curse of dimensionality.
We consider the question of whether the sampling complexity can be improved by restricting the specific neural network architecture.
Our main result shows that the residual neural network architecture and invertibility do not help overcome the complexity barriers encountered with simpler feedforward architectures.
arXiv Detail & Related papers (2024-11-08T10:00:40Z) - Topological obstruction to the training of shallow ReLU neural networks [0.0]
We study the interplay between the geometry of the loss landscape and the optimization trajectories of simple neural networks.
This paper reveals the presence of topological obstruction in the loss landscape of shallow ReLU neural networks trained using gradient flow.
arXiv Detail & Related papers (2024-10-18T19:17:48Z) - When Deep Learning Meets Polyhedral Theory: A Survey [6.899761345257773]
In the past decade, deep became the prevalent methodology for predictive modeling thanks to the remarkable accuracy of deep neural learning.
Meanwhile, the structure of neural networks converged back to simplerwise and linear functions.
arXiv Detail & Related papers (2023-04-29T11:46:53Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
We show that the generalization abilities of model-based networks for sparse recovery outperform those of regular ReLU networks.
We derive practical design rules that allow to construct model-based networks with guaranteed high generalization.
arXiv Detail & Related papers (2023-04-19T16:39:44Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Open- and Closed-Loop Neural Network Verification using Polynomial
Zonotopes [6.591194329459251]
We present a novel approach to efficiently compute tight non-contact activation functions.
In particular, we evaluate the input-output relation of each neuron by an approximation.
This results in a superior performance compared to other methods.
arXiv Detail & Related papers (2022-07-06T14:39:19Z) - Generalization Error Bounds for Iterative Recovery Algorithms Unfolded
as Neural Networks [6.173968909465726]
We introduce a general class of neural networks suitable for sparse reconstruction from few linear measurements.
By allowing a wide range of degrees of weight-sharing between the layers, we enable a unified analysis for very different neural network types.
arXiv Detail & Related papers (2021-12-08T16:17:33Z) - Topological obstructions in neural networks learning [67.8848058842671]
We study global properties of the loss gradient function flow.
We use topological data analysis of the loss function and its Morse complex to relate local behavior along gradient trajectories with global properties of the loss surface.
arXiv Detail & Related papers (2020-12-31T18:53:25Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
We propose the linear approximation neural network (LANN) to approximate a given deep model with curve activation function.
We experimentally explore the training process of neural networks and detect overfitting.
We find that the $L1$ and $L2$ regularizations suppress the increase of model complexity.
arXiv Detail & Related papers (2020-06-16T07:38:06Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
In this paper, we investigate the empirical Rademacher complexity related to intermediate layers of deep neural networks.
We propose a feature distortion method (Disout) for addressing the aforementioned problem.
The superiority of the proposed feature map distortion for producing deep neural network with higher testing performance is analyzed and demonstrated.
arXiv Detail & Related papers (2020-02-23T13:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.